Necessary Optimality Conditions and a New Approach to Multiobjective Bilevel Optimization Problems

Multiobjective optimization problems typically have conflicting objectives, and a gain in one objective very often is an expense in another. Using the concept of Pareto optimality, we investigate a multiobjective bilevel optimization problem (say, P). Our approach consists of proving that P is locally equivalent to a single level optimization problem, where the nonsmooth Mangasarian–Fromovitz constraint qualification may hold at any feasible solution. With the help of a special scalarization function introduced in optimization by Hiriart–Urruty, we convert our single level optimization problem into another problem and give necessary optimality conditions for the initial multiobjective bilevel optimization problem P.

[1]  S. Dempe A necessary and a sufficient optimality condition for bilevel programming problems , 1992 .

[2]  J. Bard Optimality conditions for the bilevel programming problem , 1984 .

[3]  Stephan Dempe,et al.  Second order optimality conditions for bilevel set optimization problems , 2010, J. Glob. Optim..

[4]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[5]  Ruoxin Zhang,et al.  Problems of Hierarchical Optimization in Finite Dimensions , 1994, SIAM J. Optim..

[6]  N. Gadhi,et al.  Necessary Optimality Conditions for Bilevel Optimization Problems Using Convexificators , 2006, J. Glob. Optim..

[7]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[8]  Roxin Zhang,et al.  Multistage hierarchical optimization problems with multi-criterion objectives , 2011 .

[9]  Boris S. Mordukhovich,et al.  Necessary Conditions in Multiobjective Optimization with Equilibrium Constraints , 2007 .

[10]  Jane J. Ye,et al.  A note on optimality conditions for bilevel programming problems , 1997 .

[11]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[12]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[13]  Marc Ciligot Travain On lagrange-kuhn-tucker multipliers for pareto optimization problems , 1994 .

[14]  S Scholtes,et al.  Nondifferentiable and two-level mathematical programming - Shimizu,K, Ishizuka,Y, Bard,JF , 1997 .

[15]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[16]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[17]  H. Stackelberg,et al.  Marktform und Gleichgewicht , 1935 .

[18]  J. B. Hiriart-Urruty,et al.  Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces , 1979, Math. Oper. Res..

[19]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[20]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[21]  J. Outrata Necessary optimality conditions for Stackelberg problems , 1993 .

[22]  A. Taa,et al.  On Lagrance-Kuhn-Tucker Mulitipliers for Muliobjective Optimization Problems , 1997 .

[23]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..