Finite Element Model Updating Using the Separable Shadow Hybrid Monte Carlo Technique

The use of Bayesian techniques in Finite Element Model (FEM) updating has recently increased. These techniques have the ability to quantify and characterize the uncertainties of dynamic structures. In order to update a FEM, the Bayesian formulation requires the evaluation of the posterior distribution function. For large systems, this functions is either difficult (or not available) to solve in an analytical way. In such cases using sampling techniques can provide good approximations of the Bayesian posterior distribution function. The Hybrid Monte Carlo (HMC) method is a powerful sampling method for solving higher-dimensional complex problems. The HMC uses the molecular dynamics (MD) as a global Monte Carlo (MC) move to reach areas of high probability. However, the acceptance rate of HMC is sensitive to the system size as well as the time step used to evaluate MD trajectory. To overcome this, we propose the use of the Separable Shadow Hybrid Monte Carlo (S2HMC) method. This method generates samples from a separable shadow Hamiltonian. The accuracy and the efficiency of this sampling method is tested on the updating of a GARTEUR SM-AG19 structure.

[1]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[2]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[3]  J. Z. Zhu,et al.  The finite element method , 1977 .

[4]  Singiresu S. Rao The finite element method in engineering , 1982 .

[5]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[6]  Creutz Global Monte Carlo algorithms for many-fermion systems. , 1988, Physical review. D, Particles and fields.

[7]  A. Kennedy,et al.  Acceptances and autocorrelations in hybrid Monte Carlo , 1991 .

[8]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[9]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[10]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[11]  Kenneth M. Hanson,et al.  Markov chain Monte Carlo posterior sampling with the Hamiltonian method , 2001, SPIE Medical Imaging.

[12]  Robert D. Skeel,et al.  Practical Construction of Modified Hamiltonians , 2001, SIAM J. Sci. Comput..

[13]  B. Datta FINITE-ELEMENT MODEL UPDATING, EIGENSTRUCTURE ASSIGNMENT AND EIGENVALUE EMBEDDING TECHNIQUES FOR VIBRATING SYSTEMS , 2002 .

[14]  Michael Link,et al.  WORKING GROUP 1: GENERATION OF VALIDATED STRUCTURAL DYNAMIC MODELS—RESULTS OF A BENCHMARK STUDY UTILISING THE GARTEUR SM-AG19 TEST-BED , 2003 .

[15]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[16]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[17]  Scott S. Hampton,et al.  Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .

[18]  Tshilidzi Marwala,et al.  Finite Element Model Updating Using Bayesian Framework and Modal Properties , 2005 .

[19]  Robert D. Skeel,et al.  Monitoring energy drift with shadow Hamiltonians , 2005 .

[20]  C. S. Kraaij Model updating of a 'clamped'-free beam system using FEMtools , 2006 .

[21]  Biswa Nath Datta,et al.  A direct method for model updating with incomplete measured data and without spurious modes , 2007 .

[22]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[23]  J. Beck,et al.  Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters , 2009 .

[24]  Sou-Sen Leu,et al.  Bayesian updating of reliability of civil infrastructure facilities based on condition-state data and fault-tree model , 2009, Reliab. Eng. Syst. Saf..

[25]  Eugenio Oñate,et al.  Structural Analysis with the Finite Element Method , 2009 .

[26]  Scott S. Hampton,et al.  A separable shadow Hamiltonian hybrid Monte Carlo method. , 2009, The Journal of chemical physics.

[27]  Tshilidzi Marwala,et al.  Finite-element-model Updating Using Computional Intelligence Techniques , 2010 .

[28]  J. M. Sanz-Serna,et al.  Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.

[29]  Tshilidzi Marwala,et al.  Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics , 2010 .

[30]  K. Yuen Bayesian Methods for Structural Dynamics and Civil Engineering , 2010 .

[31]  Tshilidzi Marwala,et al.  Sampling Techniques in Bayesian Finite Element Model Updating , 2011, ArXiv.

[32]  Linda Simo Mthembu,et al.  FINITE ELEMENT MODEL UPDATING , 2013 .

[33]  Eugenio Oñate,et al.  Structural Analysis with the Finite Element Method Linear Statics , 2013 .

[34]  Tshilidzi Marwala,et al.  Finite Element Model Updating Using the Shadow Hybrid Monte Carlo Technique , 2015 .