The effect of spin–orbit coupling on the physical and superconducting properties of the Ir-rich cubic Laves superconductors AIr2 (A = Y, Lu, and Th)

[1]  G. P. Srivastava,et al.  First-principles calculations of physical properties and superconductivity of orthorhombic Mo2BC and Nb2BN , 2021, Journal of Applied Physics.

[2]  T. Klimczuk,et al.  Strong-coupling superconductivity of SrIr2 and SrRh2 : Phonon engineering of metallic Ir and Rh , 2021, Physical Review B.

[3]  Z. Ren,et al.  Normal-state and superconducting properties of the cubic Laves phase ThIr2 , 2021 .

[4]  Y. Kubozono,et al.  Superconductivity in 5d transition metal Laves phase SrIr2 , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  J. Akimitsu,et al.  Superconducting behavior of a new metal iridate compound, SrIr2, under pressure , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Zheng Hong Zhu,et al.  Enhancement of the upper critical field in the cubic Laves-phase superconductor HfV2 by Nb doping , 2019, Superconductor Science and Technology.

[7]  Joginder Singh Galsin Superconductivity , 2018, Solid State Physics.

[8]  G. P. Srivastava,et al.  Effects of spin-orbit coupling on the electron-phonon superconductivity in the cubic Laves-phase compounds CaIr2 and CaRh2 , 2017 .

[9]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  E. R. Margine,et al.  Electron-phonon coupling and pairing mechanism in $\beta$--Bi$_2$Pd centrosymmetric superconductor , 2017, 1703.03012.

[11]  Min Zhu,et al.  Hydrogen storage and hydrogen generation properties of CaMg2-based alloys , 2017 .

[12]  A. Dal Corso Elastic constants of beryllium: a first-principles investigation , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  A. Bhatnagar,et al.  On the synthesis, characterization and hydrogen storage behavior of ZrFe2 catalyzed Li–Mg–N–H hydrogen storage material , 2015 .

[14]  A. P. Drozdov,et al.  Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system , 2015, Nature.

[15]  O. Eriksson,et al.  Lattice dynamics and chemical bonding in Sb2Te3 from first-principles calculations. , 2015, The Journal of chemical physics.

[16]  Huixia Luo,et al.  Characterization of the heavy metal pyrochlore lattice superconductor CaIr2 , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  E. Pavlidou,et al.  Investigation of ZrFe2-type materials for metal hydride hydrogen compressor systems by substituting Fe with Cr or V , 2014 .

[18]  R. Hu,et al.  Microstructure and hydrogen storage properties of non-stoichiometric Zr–Ti–V Laves phase alloys , 2013 .

[19]  I. D. Marco,et al.  Phonon spectrum, thermodynamic properties, and pressure-temperature phase diagram of uranium dioxide , 2012, 1201.5003.

[20]  H. Fu,et al.  Hydrogen absorption properties of Zr(V1−xFex)2 intermetallic compounds , 2012 .

[21]  Riping Liu,et al.  Structural, elastic, and thermal properties of Laves phase ZrV2 under pressure , 2011 .

[22]  M. Fetcenko,et al.  The correlation of C14/C15 phase abundance and electrochemical properties in the AB2 alloys , 2010 .

[23]  Amit Kumar,et al.  Superplastic behaviour of Al–Zn–Mg–Cu–Zr alloy AA7010 containing Sc , 2010 .

[24]  K.,et al.  Superconductivity and structural instability of the ZrV , compound , 2010 .

[25]  E. Akiba,et al.  Hydrogenation of CaLi2−xMgx (0 ≤ x ≤ 2) with C14 Laves phase structure , 2009 .

[26]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Xiaojuan Liu,et al.  Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles , 2007 .

[28]  M. Cieslar,et al.  Superplasticity in an Al–Mg–Zr–Sc alloy produced by equal-channel angular pressing , 2007 .

[29]  Y. Maeno,et al.  Crystal growth and structure of R2Ir2O7 (R = Pr, Eu) using molten KF , 2007 .

[30]  E. Akiba,et al.  Hydrogenation properties of CaMg2 based alloys , 2004 .

[31]  J. Fernández,et al.  Hydriding/dehydriding properties of magnesium-ZrCr2 composites , 2003 .

[32]  I. Shirotani Superconductivity of Ternary Metal Compounds Prepared at High Pressures , 2003 .

[33]  Suklyun Hong,et al.  Hydrogen in Laves phase Zr X 2 ( X = V , Cr, Mn, Fe, Co, Ni) compounds: Binding energies and electronic and magnetic structure , 2002 .

[34]  Y. Lei,et al.  Hydrogen storage properties of Zr0.8Ti0.2(Ni0.6Mn0.3−xV0.1+xCr0.05)2 (x=0.0,0.05,0.15,0.2) alloys , 2002 .

[35]  G. Sauthoff,et al.  Laves phases for high temperatures—Part II: Stability and mechanical properties , 2002 .

[36]  Jean-Michel Leger,et al.  Synthesis and Design of Superhard Materials , 2001 .

[37]  J. Joubert,et al.  Intermetallic compounds as negative electrodes of Ni/MH batteries , 2001 .

[38]  A Kokalj,et al.  XCrySDen--a new program for displaying crystalline structures and electron densities. , 1999, Journal of molecular graphics & modelling.

[39]  D. Shindo,et al.  Determination of site occupancy of additives X (X = V, Mo, W and Ti) in the Nb-Cr-X Laves phase by ALCHEMI , 1999 .

[40]  Suklyun Hong,et al.  Phase stability and elastic moduli of Cr2Nb by first-principles calculations , 1999 .

[41]  Katherine C. Chen,et al.  Elastic and mechanical properties of Nb(Cr, V)2 C15 Laves phases , 1997 .

[42]  Chu,et al.  Total-energy study of electronic structure and mechanical behavior of C15 Laves phase compounds: NbCr2 and HfV2. , 1996, Physical review. B, Condensed matter.

[43]  T. Sakai,et al.  Hydriding behavior of pseudobinary CaAl2−xMx (M = B, Si, 0 ⩽ x ⩽ 1) alloys , 1995 .

[44]  Dan Thoma,et al.  An experimental evaluation of the phase relationships and solubilities in the nbcr system , 1992 .

[45]  D. G. Pettifor,et al.  Theoretical predictions of structure and related properties of intermetallics , 1992 .

[46]  Rabe,et al.  Optimized pseudopotentials. , 1990, Physical review. B, Condensed matter.

[47]  Chu,et al.  Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. , 1987, Physical review letters.

[48]  H. Takei,et al.  Superconductivity and structural transformation in V2Hf-based C15 pseudobinary compounds , 1985 .

[49]  W. Pickett,et al.  Electronic structure, superconductivity, and magnetism in the C15 compounds ZrV/sub 2/, ZrFe/sub 2/, and ZrCo/sub 2/ , 1983 .

[50]  A. Lawson,et al.  Superconductivity of Th(Ir,Os)2 and Th(Ir,Ru)2 alloys , 1982 .

[51]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[52]  K. Baberschke,et al.  Superconducting transition temperature, its pressure dependence and structural transformation in (La, Ce)Ru2 alloys , 1977 .

[53]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[54]  R. Dynes,et al.  Transition temperature of strong-coupled superconductors reanalyzed , 1975 .

[55]  R. Dynes,et al.  Superconductivity at very strong coupling , 1975 .

[56]  T. Claeson,et al.  Search for superconductivity in Laves phase compounds , 1974 .

[57]  J. Cannon,et al.  The effect of high pressure on the crystal structure of LaOs2 and CeOs2 , 1973 .

[58]  Ö. Rapp,et al.  Low temperature specific heat measurements of ZrV2 and HfV2 , 1971 .

[59]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[60]  T. F. Smith,et al.  Superconductivity of lanthanum and lanthanum compounds at zero and high pressure , 1967 .

[61]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[62]  B. Matthias,et al.  SUPERCONDUCTIVITY IN BINARY ALLOY SYSTEMS OF THE RARE EARTHS AND OF THORIUM WITH Pt-GROUP METALS , 1965 .

[63]  B. Matthias,et al.  SOME NEW SUPERCONDUCTING COMPOUNDS , 1961 .

[64]  G. M. Éliashberg,et al.  Interactions between electrons and lattice vibrations in a superconductor , 1960 .

[65]  B. Matthias,et al.  Laves phase compounds of rare earths and hafnium with noble metals , 1959 .

[66]  E. A. Wood,et al.  Laves‐phase compounds of alkaline earths and noble metals , 1958 .

[67]  A. B. Migdal,et al.  INTERACTION BETWEEN ELECTRONS AND THE LATTICE VIBRATIONS IN A NORMAL METAL , 1958 .

[68]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[69]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[70]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[71]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .