Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community

Abstract. In recent years, deep learning (DL), a rebranding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, and natural language processing. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV, e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should not only be aware of advancements such as DL, but also be leading researchers in this area. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools, and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as they relate to (i) inadequate data sets, (ii) human-understandable solutions for modeling physical phenomena, (iii) big data, (iv) nontraditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial, and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.

[1]  Antonio Plaza,et al.  Recent Developments in Endmember Extraction and Spectral Unmixing , 2011 .

[2]  Brian P. Salmon,et al.  Multiview Deep Learning for Land-Use Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[3]  Mohamed Dahmane,et al.  Object detection in pleiades images using deep features , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[4]  Nikolaos Doulamis,et al.  Deep supervised learning for hyperspectral data classification through convolutional neural networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[5]  Fan Zhang,et al.  Deep Boltzmann Machines based vehicle recognition , 2014, The 26th Chinese Control and Decision Conference (2014 CCDC).

[6]  Chen Chen,et al.  Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine , 2014, Remote. Sens..

[7]  M. E. Winter Comparison of approaches for determining end-members in hyperspectral data , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[8]  Yao Yu,et al.  Road network extraction via deep learning and line integral convolution , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[9]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[10]  Shih-Fu Chang,et al.  CDC: Convolutional-De-Convolutional Networks for Precise Temporal Action Localization in Untrimmed Videos , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Jun Huang,et al.  Infrared ultraspectral signature classification based on a restricted Boltzmann machine with sparse and prior constraints , 2015 .

[12]  Thomas Brox,et al.  Learning to generate chairs with convolutional neural networks , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Francesco Visin,et al.  A guide to convolution arithmetic for deep learning , 2016, ArXiv.

[14]  Antonio J. Plaza,et al.  Active learning based autoencoder for hyperspectral imagery classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[15]  Bolei Zhou,et al.  Object Detectors Emerge in Deep Scene CNNs , 2014, ICLR.

[16]  Michael Kampffmeyer,et al.  Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[17]  Xiao Xiang Zhu,et al.  A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data , 2016, IEEE Geoscience and Remote Sensing Letters.

[18]  Stefano Ermon,et al.  Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping , 2015, AAAI.

[19]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[20]  Tom Schaul,et al.  Unit Tests for Stochastic Optimization , 2013, ICLR.

[21]  Qiang Liu,et al.  Very high resolution images classification by fine tuning deep convolutional neural networks , 2016, International Conference on Digital Image Processing.

[22]  Nan Yang,et al.  A review of road extraction from remote sensing images , 2016 .

[23]  Jon Atli Benediktsson,et al.  Big Data for Remote Sensing: Challenges and Opportunities , 2016, Proceedings of the IEEE.

[24]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[25]  Ramesh C. Jain,et al.  Social pixels: genesis and evaluation , 2010, ACM Multimedia.

[26]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[27]  Wen Yang,et al.  High-resolution satellite scene classification using a sparse coding based multiple feature combination , 2012 .

[28]  Wei Wang,et al.  CNN based suburban building detection using monocular high resolution Google Earth images , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[29]  Michael Egmont-Petersen,et al.  Image processing with neural networks - a review , 2002, Pattern Recognit..

[30]  Fabio A. González,et al.  A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-Cell Carcinoma Cancer Detection , 2013, MICCAI.

[31]  Saurabh Prasad,et al.  Level set hyperspectral image segmentation using spectral information divergence-based best band selection , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[32]  Ronan Collobert,et al.  Deep Learning for Efficient Discriminative Parsing , 2011, AISTATS.

[33]  Derek Anderson,et al.  Spectral Unmixing Cluster Validity Index for Multiple Sets of Endmembers , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[34]  Michael A. Lefsky,et al.  Review of studies on tree species classification from remotely sensed data , 2016 .

[35]  Dong Yu,et al.  Scalable stacking and learning for building deep architectures , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[36]  Paolo Remagnino,et al.  Deep-plant: Plant identification with convolutional neural networks , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[37]  Antonio J. Plaza,et al.  Survey of geometric and statistical unmixing algorithms for hyperspectral images , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[38]  Sen Jia,et al.  Convolutional neural networks for hyperspectral image classification , 2017, Neurocomputing.

[39]  Maoguo Gong,et al.  Three-Class Change Detection in Synthetic Aperture Radar Images Based on Deep Belief Network , 2015, BIC-TA.

[40]  Uwe Stilla,et al.  DEEP NEURAL NETWORKS FOR ABOVE-GROUND DETECTION IN VERY HIGH SPATIAL RESOLUTION DIGITAL ELEVATION MODELS , 2015 .

[41]  Daniel Göhring,et al.  Online vehicle detection using deep neural networks and lidar based preselected image patches , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[42]  Qi Zhang,et al.  Deep learning-based tree classification using mobile LiDAR data , 2015 .

[43]  Derek C. Rose,et al.  Deep Machine Learning - A New Frontier in Artificial Intelligence Research [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[44]  Jun Zhou,et al.  CRF learning with CNN features for hyperspectral image segmentation , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[45]  Yi Shen,et al.  Convolutional neural network based classification for hyperspectral data , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[46]  Jiajun Wu,et al.  Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning , 2015, NIPS.

[47]  Dong Yu,et al.  Deep Learning and Its Applications to Signal and Information Processing [Exploratory DSP] , 2011, IEEE Signal Processing Magazine.

[48]  M. Körner,et al.  SINGLE-IMAGE SUPER RESOLUTION FOR MULTISPECTRAL REMOTE SENSING DATA USING CONVOLUTIONAL NEURAL NETWORKS , 2016 .

[49]  A. Solberg,et al.  Oil spill detection by satellite remote sensing , 2005 .

[50]  John E. Ball,et al.  Level Set Hyperspectral Image Classification Using Best Band Analysis , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Ning Li,et al.  SAR ATR based on displacement- and rotation-insensitive CNN , 2016 .

[52]  Jing Zhang,et al.  Hyperspectral image classification based on deep stacking network , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[53]  S. Prasher,et al.  Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn , 2003 .

[54]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Gang Wang,et al.  Spectral-spatial classification of hyperspectral image using autoencoders , 2013, 2013 9th International Conference on Information, Communications & Signal Processing.

[56]  Xiao Xiang Zhu,et al.  Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[57]  Fabio Del Frate,et al.  Use of Neural Networks for Automatic Classification From High-Resolution Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Haipeng Wang,et al.  Application of deep-learning algorithms to MSTAR data , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[59]  Thomas Brox,et al.  Orientation-boosted Voxel Nets for 3D Object Recognition , 2016, BMVC.

[60]  Lorenzo Bruzzone,et al.  Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances , 2016, IEEE Geoscience and Remote Sensing Magazine.

[61]  Huimin Ma,et al.  3D Object Proposals for Accurate Object Class Detection , 2015, NIPS.

[62]  Mihai Datcu,et al.  Deep learning in very high resolution remote sensing image information mining communication concept , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[63]  Supun Samarasekera,et al.  Long-Range Pedestrian Detection using stereo and a cascade of convolutional network classifiers , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[64]  Nassir Navab,et al.  Deep Learning of Local RGB-D Patches for 3D Object Detection and 6D Pose Estimation , 2016, ECCV.

[65]  Kaleem Siddiqi,et al.  Differential Geometry Boosts Convolutional Neural Networks for Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[66]  Taichi Kiwaki,et al.  Deep Boltzmann Machines with Fine Scalability , 2015, ArXiv.

[67]  Christian Wolf,et al.  Sequential Deep Learning for Human Action Recognition , 2011, HBU.

[68]  Thomas Hofmann,et al.  Greedy Layer-Wise Training of Deep Networks , 2007 .

[69]  Matus Telgarsky,et al.  Benefits of Depth in Neural Networks , 2016, COLT.

[70]  Xiaoqiang Lu,et al.  Remote Sensing Image Scene Classification: Benchmark and State of the Art , 2017, Proceedings of the IEEE.

[71]  Nirmal Keshava,et al.  A Survey of Spectral Unmixing Algorithms , 2003 .

[72]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[73]  Pascal Vincent,et al.  Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives , 2012, ArXiv.

[74]  Amanda Griffin Kennedy Space Center , 2012 .

[75]  Jihao Yin,et al.  Cloud detection of remote sensing images by deep learning , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[76]  F. Alidoost,et al.  Knowledge Based 3d Building Model Recognition Using Convolutional Neural Networks from LIDAR and Aerial Imageries , 2016 .

[77]  Nagesh Kumar Uba Land Use and Land Cover Classification Using Deep Learning Techniques , 2019, ArXiv.

[78]  Yujun Zeng,et al.  Traffic Sign Recognition Using Extreme Learning Classifier with Deep Convolutional Features , 2015 .

[79]  Ying Liu,et al.  Geological Disaster Recognition on Optical Remote Sensing Images Using Deep Learning , 2016 .

[80]  Yue Zhang,et al.  Deep Learning for Event-Driven Stock Prediction , 2015, IJCAI.

[81]  Amy Loutfi,et al.  Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks , 2016, Remote. Sens..

[82]  Taghi M. Khoshgoftaar,et al.  Deep learning applications and challenges in big data analytics , 2015, Journal of Big Data.

[83]  Shih-Fu Chang,et al.  3D shape retrieval using a single depth image from low-cost sensors , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[84]  Jamie Sherrah,et al.  Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery , 2016, ArXiv.

[85]  Dong Yu,et al.  Deep Learning: Methods and Applications , 2014, Found. Trends Signal Process..

[86]  Menglong Yan,et al.  Object recognition in remote sensing images using sparse deep belief networks , 2015 .

[87]  Baojun Zhao,et al.  Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[88]  Bhiksha Raj,et al.  A Survey: Time Travel in Deep Learning Space: An Introduction to Deep Learning Models and How Deep Learning Models Evolved from the Initial Ideas , 2015, ArXiv.

[89]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[90]  Anton Konushin,et al.  A SYSTEM FOR LARGE-SCALE AUTOMATIC TRAFFIC SIGN RECOGNITION AND MAPPING , 2013 .

[91]  Bin Wang,et al.  Deep Convolutional networks with superpixel segmentation for hyperspectral image classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[92]  Markus Gerke,et al.  The ISPRS benchmark on urban object classification and 3D building reconstruction , 2012 .

[93]  Domenico Velotto,et al.  Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[94]  Junwei Han,et al.  A Survey on Object Detection in Optical Remote Sensing Images , 2016, ArXiv.

[95]  Bruno A. Olshausen,et al.  Learning Sparse Codes for Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[96]  William J. Emery,et al.  An Innovative Neural-Net Method to Detect Temporal Changes in High-Resolution Optical Satellite Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[97]  Maoguo Gong,et al.  Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[98]  Germán Ros,et al.  Street-view change detection with deconvolutional networks , 2016, Autonomous Robots.

[99]  Xiao Xiang Zhu,et al.  Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[100]  Matthew D. Zeiler ADADELTA: An Adaptive Learning Rate Method , 2012, ArXiv.

[101]  Jing Guo,et al.  Improved cloud phase retrieval approaches for China's FY-3A/VIRR multi-channel data using Artificial Neural Networks , 2016 .

[102]  Amy Loutfi,et al.  A review of unsupervised feature learning and deep learning for time-series modeling , 2014, Pattern Recognit. Lett..

[103]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[104]  Luca Maria Gambardella,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Flexible, High Performance Convolutional Neural Networks for Image Classification , 2022 .

[105]  Bor-Chen Kuo,et al.  Feature Mining for Hyperspectral Image Classification , 2013, Proceedings of the IEEE.

[106]  Jianhua Wang,et al.  Deep hierarchical representation and segmentation of high resolution remote sensing images , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[107]  Peter Glöckner,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2013 .

[108]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[109]  Xiu Li,et al.  When underwater imagery analysis meets deep learning: A solution at the age of big visual data , 2015, OCEANS 2015 - MTS/IEEE Washington.

[110]  Marc'Aurelio Ranzato,et al.  Large Scale Distributed Deep Networks , 2012, NIPS.

[111]  Heidi Kreibich,et al.  Social media as an information source for rapid flood inundation mapping , 2015 .

[112]  Yingfeng Cai,et al.  Night-Time Vehicle Sensing in Far Infrared Image with Deep Learning , 2016, J. Sensors.

[113]  Jürgen Schmidhuber,et al.  Highway Networks , 2015, ArXiv.

[114]  Fachao Qin,et al.  Object-oriented ensemble classification for polarimetric SAR Imagery using restricted Boltzmann machines , 2017 .

[115]  Venu Govindaraju,et al.  Why Regularized Auto-Encoders learn Sparse Representation? , 2015, ICML.

[116]  Luisa Verdoliva,et al.  Land Use Classification in Remote Sensing Images by Convolutional Neural Networks , 2015, ArXiv.

[117]  Jefersson Alex dos Santos,et al.  Towards better exploiting convolutional neural networks for remote sensing scene classification , 2016, Pattern Recognit..

[118]  C. W. Hamilton,et al.  AUTOMATED DETECTION OF IMPACT CRATERS AND VOLCANIC ROOTLESS CONES IN MARS SATELLITE IMAGERY USING CONVOLUTIONAL NEURAL NETWORKS AND SUPPORT VECTOR MACHINES , 2015 .

[119]  Xinwei Zheng,et al.  Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine , 2016 .

[120]  Colin P. Schwegmann,et al.  Very deep learning for ship discrimination in Synthetic Aperture Radar imagery , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[121]  Xue-wen Chen,et al.  Big Data Deep Learning: Challenges and Perspectives , 2014, IEEE Access.

[122]  Yansheng Li,et al.  Unsupervised Spectral–Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[123]  Albert Y. Zomaya,et al.  Remote sensing big data computing: Challenges and opportunities , 2015, Future Gener. Comput. Syst..

[124]  Uwe Stilla,et al.  SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS , 2016 .

[125]  Nasir M. Rajpoot,et al.  Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images , 2016, IEEE Trans. Medical Imaging.

[126]  Konstantinos Karantzalos,et al.  BENCHMARKING DEEP LEARNING FRAMEWORKS FOR THE CLASSIFICATION OF VERY HIGH RESOLUTION SATELLITE MULTISPECTRAL DATA , 2016 .

[127]  Xiaoou Tang,et al.  Image Super-Resolution Using Deep Convolutional Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[128]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[129]  Bo Qu,et al.  Deep semantic understanding of high resolution remote sensing image , 2016, 2016 International Conference on Computer, Information and Telecommunication Systems (CITS).

[130]  S. Sachin Kumar,et al.  Deep Model for Classification of Hyperspectral image using Restricted Boltzmann Machine , 2014, ICONIAAC '14.

[131]  Le Wang,et al.  Incorporating spatial information in spectral unmixing: A review , 2014 .

[132]  Lei Xue,et al.  RECOGNITION OF SAR TARGET BASED ON MULTILAYER AUTO-ENCODER AND SNN , 2013 .

[133]  Jon Atli Benediktsson,et al.  Very High-Resolution Remote Sensing: Challenges and Opportunities [Point of View] , 2012, Proc. IEEE.

[134]  Kai Wang,et al.  Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists , 2010, Sensors.

[135]  Dong Yu,et al.  Tensor Deep Stacking Networks , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[136]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[137]  Joydeep Ghosh,et al.  An Active Learning Approach to Hyperspectral Data Classification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[138]  Liangpei Zhang,et al.  A Multifeature Tensor for Remote-Sensing Target Recognition , 2011, IEEE Geoscience and Remote Sensing Letters.

[139]  Ilya Sutskever,et al.  Learning Recurrent Neural Networks with Hessian-Free Optimization , 2011, ICML.

[140]  Harish Bhaskar,et al.  Supervised remote sensing image segmentation using boosted convolutional neural networks , 2016, Knowl. Based Syst..

[141]  Xing Zhao,et al.  Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[142]  Jonathan Larsson,et al.  Vehicle detection and road scene segmentation using deep learning , 2016 .

[143]  Liujuan Cao,et al.  Deep neural networks-based vehicle detection in satellite images , 2015, 2015 International Symposium on Bioelectronics and Bioinformatics (ISBB).

[144]  Yun Fu,et al.  Deep transfer learning for automatic target classification: MWIR to LWIR , 2016, SPIE Defense + Security.

[145]  David Bergström,et al.  Hyperspectral image analysis using deep learning — A review , 2016, 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA).

[146]  Changshui Zhang,et al.  DeepFish: Accurate underwater live fish recognition with a deep architecture , 2016, Neurocomputing.

[147]  Wei Zhang,et al.  Multiple Classifier System for Remote Sensing Image Classification: A Review , 2012, Sensors.

[148]  Jürgen Schmidhuber,et al.  Highway and Residual Networks learn Unrolled Iterative Estimation , 2016, ICLR.

[149]  Noël Richard,et al.  A Comprehensive Evaluation of Spectral Distance Functions and Metrics for Hyperspectral Image Processing , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[150]  David Morgan,et al.  Deep convolutional neural networks for ATR from SAR imagery , 2015, Defense + Security Symposium.

[151]  Gong Jianyaa,et al.  Of Multi-temporal Remote Sensing Data Change Detection Algorithms , 2008 .

[152]  Michael E. Schaepman,et al.  A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[153]  Shiming Xiang,et al.  Aircraft Detection by Deep Belief Nets , 2013, 2013 2nd IAPR Asian Conference on Pattern Recognition.

[154]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[155]  한보형,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015 .

[156]  Peng Liu,et al.  Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing 1 Active Deep Learning for Classification of Hyperspectral Images , 2022 .

[157]  Guillermo Sapiro,et al.  Robust Large Margin Deep Neural Networks , 2016, IEEE Transactions on Signal Processing.

[158]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[159]  Jana Kosecka,et al.  Multiview RGB-D Dataset for Object Instance Detection , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[160]  Fernando A. Mujica,et al.  An Empirical Evaluation of Deep Learning on Highway Driving , 2015, ArXiv.

[161]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[162]  Pol Coppin,et al.  Endmember variability in Spectral Mixture Analysis: A review , 2011 .

[163]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[164]  Yingfeng Cai,et al.  A Vehicle Detection Algorithm Based on Deep Belief Network , 2014, TheScientificWorldJournal.

[165]  Yangqing Jia,et al.  Deep Convolutional Ranking for Multilabel Image Annotation , 2013, ICLR.

[166]  Qian Du,et al.  Hyperspectral Image Classification Using Deep Pixel-Pair Features , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[167]  Li Fei-Fei,et al.  Recurrent Attention Models for Depth-Based Person Identification , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[168]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[169]  Yanfeng Gu,et al.  Deep fusion of hyperspectral and LiDAR data for thematic classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[170]  Mahesh Pal,et al.  KERNEL METHODS IN REMOTE SENSING: A REVIEW , 2009 .

[171]  Jiquan Ngiam,et al.  Sparse Filtering , 2011, NIPS.

[172]  Soumya K. Ghosh,et al.  DCAP: A deep convolution architecture for prediction of urban growth , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[173]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[174]  Ye Zhang,et al.  Classification of hyperspectral image based on deep belief networks , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[175]  Tom Schaul,et al.  No more pesky learning rates , 2012, ICML.

[176]  Derek T. Anderson,et al.  Hyperspectral band selection based on the aggregation of proximity measures for automated target detection , 2014, Defense + Security Symposium.

[177]  Jefersson Alex dos Santos,et al.  Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[178]  Nicolas H. Younan,et al.  Hyperspectral Pixel Unmixing via Spectral Band Selection and DC-Insensitive Singular Value Decomposition , 2007, IEEE Geoscience and Remote Sensing Letters.

[179]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[180]  Dong Yu,et al.  Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[181]  Yanfei Liu,et al.  SatCNN: satellite image dataset classification using agile convolutional neural networks , 2017 .

[182]  Björn Stenger,et al.  Detecting Change for Multi-View, Long-Term Surface Inspection , 2015, BMVC.

[183]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[184]  Shanjun Mao,et al.  Spectral–spatial classification of hyperspectral images using deep convolutional neural networks , 2015 .

[185]  Lance E. Besaw,et al.  Detecting buried explosive hazards with handheld GPR and deep learning , 2016, SPIE Defense + Security.

[186]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[187]  Bo Du,et al.  Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art , 2016, IEEE Geoscience and Remote Sensing Magazine.

[188]  Yann LeCun,et al.  Energy-based Generative Adversarial Network , 2016, ICLR.

[189]  Hervé Glotin,et al.  LifeCLEF 2016: Multimedia Life Species Identification Challenges , 2016, CLEF.

[190]  Junwei Han,et al.  Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[191]  Qian Du,et al.  Integrating spectral and spatial information into deep convolutional Neural Networks for hyperspectral classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[192]  Geoffrey E. Hinton,et al.  Learning to Label Aerial Images from Noisy Data , 2012, ICML.

[193]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[194]  Jon Atli Benediktsson,et al.  On Understanding Big Data Impacts in Remotely Sensed Image Classification Using Support Vector Machine Methods , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[195]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[196]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[197]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[198]  Ethan Fetaya,et al.  StixelNet: A Deep Convolutional Network for Obstacle Detection and Road Segmentation , 2015, BMVC.

[199]  Asok Ray,et al.  Early Detection of Combustion Instability from Hi-speed Flame Images via Deep Learning and Symbolic Time Series Analysis , 2015, Annual Conference of the PHM Society.

[200]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[201]  David Bull,et al.  A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks , 2016 .

[202]  Supratik Mukhopadhyay,et al.  DeepSat: a learning framework for satellite imagery , 2015, SIGSPATIAL/GIS.

[203]  Xiaorui Ma,et al.  Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning , 2016 .

[204]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[205]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[206]  Haokui Zhang,et al.  Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network , 2017 .

[207]  Subhashini Venugopalan,et al.  Translating Videos to Natural Language Using Deep Recurrent Neural Networks , 2014, NAACL.

[208]  Yurong Liu,et al.  A survey of deep neural network architectures and their applications , 2017, Neurocomputing.

[209]  Jiming Li,et al.  Active learning for hyperspectral image classification with a stacked autoencoders based neural network , 2015, 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[210]  Jun Wang,et al.  Road network extraction: a neural-dynamic framework based on deep learning and a finite state machine , 2015 .

[211]  David Berthelot,et al.  BEGAN: Boundary Equilibrium Generative Adversarial Networks , 2017, ArXiv.

[212]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[213]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[214]  Vanessa Frías-Martínez,et al.  Spectral clustering for sensing urban land use using Twitter activity , 2014, Engineering applications of artificial intelligence.

[215]  Quoc V. Le,et al.  On optimization methods for deep learning , 2011, ICML.

[216]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[217]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[218]  Xiaoqiang Lu,et al.  Scene Recognition by Manifold Regularized Deep Learning Architecture , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[219]  Alexandre Boulch,et al.  Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[220]  Youngwook Kim,et al.  Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks , 2016, IEEE Geoscience and Remote Sensing Letters.

[221]  Jian Yao,et al.  S-CNN-BASED SHIP DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES , 2016 .

[222]  Stacy L. Ozesmi,et al.  Satellite remote sensing of wetlands , 2002, Wetlands Ecology and Management.

[223]  Amir Hossein Alavi,et al.  Machine learning in geosciences and remote sensing , 2016 .

[224]  Rajat Raina,et al.  Large-scale deep unsupervised learning using graphics processors , 2009, ICML '09.

[225]  Quoc V. Le A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks , 2015 .

[226]  Timothy C. Havens,et al.  Deep belief networks for false alarm rejection in forward-looking ground-penetrating radar , 2015, Defense + Security Symposium.

[227]  Joachim Denzler,et al.  Efficient Convolutional Patch Networks for Scene Understanding , 2015 .

[228]  Luís A. Alexandre 3D Object Recognition Using Convolutional Neural Networks with Transfer Learning Between Input Channels , 2014, IAS.

[229]  Maoguo Gong,et al.  Deep learning to classify difference image for image change detection , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[230]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[231]  Thomas S. Huang,et al.  Semisupervised Hyperspectral Classification Using Task-Driven Dictionary Learning With Laplacian Regularization , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[232]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[233]  Nataliia Kussul,et al.  Deep learning approach for large scale land cover mapping based on remote sensing data fusion , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[234]  Xia Xu,et al.  R-VCANet: A New Deep-Learning-Based Hyperspectral Image Classification Method , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[235]  Avik Bhattacharya,et al.  Urban classification using PolSAR data and deep learning , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[236]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[237]  Naif Alajlan,et al.  Using convolutional features and a sparse autoencoder for land-use scene classification , 2016 .

[238]  Sergey Levine,et al.  Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection , 2016, Int. J. Robotics Res..

[239]  Yunsong Li,et al.  Hyperspectral image reconstruction by deep convolutional neural network for classification , 2017, Pattern Recognit..

[240]  Haipeng Wang,et al.  SAR target recognition based on deep learning , 2014, 2014 International Conference on Data Science and Advanced Analytics (DSAA).

[241]  Bei Zhao,et al.  Scene classification based on a hierarchical convolutional sparse auto-encoder for high spatial resolution imagery , 2017 .

[242]  Liujuan Cao,et al.  Robust vehicle detection by combining deep features with exemplar classification , 2016, Neurocomputing.

[243]  M. Siegel,et al.  Hyperspectral classification via deep networks and superpixel segmentation , 2015 .

[244]  Timothy C. Havens,et al.  Efficient Multiple Kernel Classification Using Feature and Decision Level Fusion , 2017, IEEE Transactions on Fuzzy Systems.

[245]  Shiguang Shan,et al.  Deep Network Cascade for Image Super-resolution , 2014, ECCV.

[246]  Yann LeCun,et al.  Indoor Semantic Segmentation using depth information , 2013, ICLR.

[247]  Jürgen Schmidhuber,et al.  Training Very Deep Networks , 2015, NIPS.

[248]  Quan-Sen Sun,et al.  Hyperspectral classification via learnt features , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[249]  Le Zhang,et al.  A survey of randomized algorithms for training neural networks , 2016, Inf. Sci..

[250]  Shunta Saito,et al.  Building and road detection from large aerial imagery , 2015, Electronic Imaging.

[251]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[252]  Heesung Kwon,et al.  Contextual deep CNN based hyperspectral classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[253]  Ping Wang,et al.  A CNN based functional zone classification method for aerial images , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[254]  Peter Kontschieder,et al.  Deep Neural Decision Forests , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[255]  Congcong Li,et al.  Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping , 2016 .

[256]  Luc Van Gool,et al.  Temporal Segment Networks: Towards Good Practices for Deep Action Recognition , 2016, ECCV.

[257]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[258]  Stefan Lee,et al.  Predicting Geo-informative Attributes in Large-Scale Image Collections Using Convolutional Neural Networks , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[259]  Jiang Han,et al.  Fully convolutional networks for building and road extraction: Preliminary results , 2016 .

[260]  Ioannis Stamos,et al.  CNN-Based Object Segmentation in Urban LIDAR with Missing Points , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[261]  Jamie Sherrah,et al.  Effective semantic pixel labelling with convolutional networks and Conditional Random Fields , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[262]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[263]  Chee Seng Chan,et al.  phi-LSTM: A Phrase-Based Hierarchical LSTM Model for Image Captioning , 2016, ACCV.

[264]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2015, CVPR.

[265]  Wei Wei,et al.  Bands Sensitive Convolutional Network for Hyperspectral Image Classification , 2016, ICIMCS.

[266]  Héctor F. Satizábal,et al.  Augmenting a convolutional neural network with local histograms - A case study in crop classification from high-resolution UAV imagery , 2016, ESANN.

[267]  Chandan Roy,et al.  Cyclone track forecasting based on satellite images using artificial neural networks , 2009 .

[268]  Xiaogang Wang,et al.  A discriminative deep model for pedestrian detection with occlusion handling , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[269]  Sven Behnke,et al.  Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition , 2010, ICANN.

[270]  Pascal Kaiser Learning City Structures from Online Maps , 2016 .

[271]  Trevor Darrell,et al.  Sequence to Sequence -- Video to Text , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[272]  Jie Wang,et al.  Hyperspectral image classification with small training set by deep network and relative distance prior , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[273]  Mohamed Elawady,et al.  Sparse Coral Classification Using Deep Convolutional Neural Networks , 2015, ArXiv.

[274]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[275]  Stefano Tubaro,et al.  Deep Convolutional Neural Networks for pedestrian detection , 2015, Signal Process. Image Commun..

[276]  Kilian Q. Weinberger,et al.  Marginalized Denoising Autoencoders for Domain Adaptation , 2012, ICML.

[277]  Shanjun Mao,et al.  A deep learning framework for hyperspectral image classification using spatial pyramid pooling , 2016 .

[278]  Stuart E. Middleton,et al.  Real-Time Crisis Mapping of Natural Disasters Using Social Media , 2014, IEEE Intelligent Systems.

[279]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[280]  Jürgen Schmidhuber,et al.  Recurrent Highway Networks , 2016, ICML.

[281]  Kunikazu Kobayashi,et al.  Time series forecasting using a deep belief network with restricted Boltzmann machines , 2014, Neurocomputing.

[282]  Davide Cozzolino,et al.  Pansharpening by Convolutional Neural Networks , 2016, Remote. Sens..

[283]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[284]  Qiang Wang,et al.  Benchmarking State-of-the-Art Deep Learning Software Tools , 2016, 2016 7th International Conference on Cloud Computing and Big Data (CCBD).

[285]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[286]  Farid Melgani,et al.  Multilabel classification of UAV images with Convolutional Neural Networks , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[287]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[288]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[289]  Dapinder Kaur,et al.  A Novel Vehicle Classification Model for Urban Traffic Surveillance Using the Deep Neural Network Model , 2016 .

[290]  Urs A. Muller,et al.  Learning long-range vision for autonomous off-road driving , 2009 .

[291]  Taghi M. Khoshgoftaar,et al.  A survey of open source tools for machine learning with big data in the Hadoop ecosystem , 2015, Journal of Big Data.

[292]  Yann LeCun,et al.  Learning Invariant Feature Hierarchies , 2012, ECCV Workshops.

[293]  Zhiwei Song,et al.  Appearance-based Brake-Lights recognition using deep learning and vehicle detection , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[294]  Uwe Stilla,et al.  Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks , 2016, IEEE Geoscience and Remote Sensing Letters.

[295]  Amnon Shashua,et al.  On the Expressive Power of Overlapping Operations of Deep Networks , 2017, ArXiv.

[296]  Andrey A. Filchenkov,et al.  Application of deep learning to the problem of vehicle detection in UAV images , 2016, 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM).

[297]  Bernt Schiele,et al.  Learning What and Where to Draw , 2016, NIPS.

[298]  Jing Huang,et al.  Point cloud labeling using 3D Convolutional Neural Network , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[299]  Jie Geng,et al.  Spectral–Spatial Classification of Hyperspectral Image Based on Deep Auto-Encoder , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[300]  Bertrand Le Saux,et al.  How useful is region-based classification of remote sensing images in a deep learning framework? , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[301]  Pablo Casaseca-de-la-Higuera,et al.  Systematic infrared image quality improvement using deep learning based techniques , 2016, Remote Sensing.

[302]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[303]  Lorenzo Bruzzone,et al.  Deep feature representation for hyperspectral image classification , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[304]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[305]  Zheng Zhang,et al.  MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems , 2015, ArXiv.

[306]  David Balduzzi,et al.  Neural Taylor Approximations: Convergence and Exploration in Rectifier Networks , 2016, ICML.

[307]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[308]  Yanfei Zhong,et al.  Large patch convolutional neural networks for the scene classification of high spatial resolution imagery , 2016 .

[309]  Fei-Yue Wang,et al.  Traffic Flow Prediction With Big Data: A Deep Learning Approach , 2015, IEEE Transactions on Intelligent Transportation Systems.

[310]  Steven Verstockt,et al.  Hyperspectral Image Classification with Convolutional Neural Networks , 2015, ACM Multimedia.

[311]  Aurélien Ducournau,et al.  Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data , 2016, 2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS).

[312]  Naif Alajlan,et al.  Differential Evolution Extreme Learning Machine for the Classification of Hyperspectral Images , 2014, IEEE Geoscience and Remote Sensing Letters.

[313]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[314]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[315]  Chao Li,et al.  Co-saliency detection via looking deep and wide , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[316]  Cheng Wang,et al.  Automated Extraction of Urban Road Facilities Using Mobile Laser Scanning Data , 2015, IEEE Transactions on Intelligent Transportation Systems.

[317]  Nikos Komodakis,et al.  Building detection in very high resolution multispectral data with deep learning features , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[318]  Melba M. Crawford,et al.  Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning , 2014, IEEE Signal Processing Magazine.

[319]  Michael F. Goodchild,et al.  The convergence of GIS and social media: challenges for GIScience , 2011, Int. J. Geogr. Inf. Sci..

[320]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[321]  Helmut Mayer,et al.  Automatic Object Extraction from Aerial Imagery - A Survey Focusing on Buildings , 1999, Comput. Vis. Image Underst..

[322]  R. Srikant,et al.  Why Deep Neural Networks for Function Approximation? , 2016, ICLR.

[323]  Lance E. Besaw,et al.  Deep learning algorithms for detecting explosive hazards in ground penetrating radar data , 2014, Defense + Security Symposium.

[324]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[325]  Gong Cheng,et al.  Scene classification of high resolution remote sensing images using convolutional neural networks , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[326]  Darko Stefanovic,et al.  Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification , 2016, Comput. Intell. Neurosci..

[327]  Graham W. Taylor,et al.  Adaptive deconvolutional networks for mid and high level feature learning , 2011, 2011 International Conference on Computer Vision.

[328]  Wei Li,et al.  Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery , 2017, IEEE Geoscience and Remote Sensing Letters.

[329]  Alison B. Lowndes,et al.  Deep Learning with GPUs , 2016 .

[330]  Carlo Gatta,et al.  Unsupervised deep feature extraction of hyperspectral images , 2014, 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[331]  Sebastian Scherer,et al.  3D Convolutional Neural Networks for landing zone detection from LiDAR , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[332]  Ji Wan,et al.  Deep Learning for Content-Based Image Retrieval: A Comprehensive Study , 2014, ACM Multimedia.

[333]  Hongyi Liu,et al.  A New Pan-Sharpening Method With Deep Neural Networks , 2015, IEEE Geoscience and Remote Sensing Letters.

[334]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[335]  Raquel Urtasun,et al.  Efficient Deep Learning for Stereo Matching , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[336]  Shawn D. Newsam,et al.  Bag-of-visual-words and spatial extensions for land-use classification , 2010, GIS '10.

[337]  Elfatih M. Abdel-Rahman,et al.  The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature , 2008 .

[338]  Zhenlong Yuan,et al.  Droid-Sec: deep learning in android malware detection , 2015, SIGCOMM 2015.

[339]  Bo Du,et al.  Scene Classification via a Gradient Boosting Random Convolutional Network Framework , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[340]  Lei Guo,et al.  Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[341]  Shuang Wang,et al.  Using deep neural networks for synthetic aperture radar image registration , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[342]  M. Payne,et al.  A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink , 2013 .

[343]  Guang-Bin Huang,et al.  Trends in extreme learning machines: A review , 2015, Neural Networks.

[344]  Wei Yao,et al.  CLASSIFICATION OF URBAN AERIAL DATA BASED ON PIXEL LABELLING WITH DEEP CONVOLUTIONAL NEURAL NETWORKS AND LOGISTIC REGRESSION , 2016 .

[345]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[346]  Paolo Remagnino,et al.  How deep learning extracts and learns leaf features for plant classification , 2017, Pattern Recognit..

[347]  Nicholas J. Tate,et al.  A critical synthesis of remotely sensed optical image change detection techniques , 2015 .

[348]  Claudia Notarnicola,et al.  Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data , 2015, Remote. Sens..

[349]  Jiwen Lu,et al.  PCANet: A Simple Deep Learning Baseline for Image Classification? , 2014, IEEE Transactions on Image Processing.

[350]  Gregory D. Hager,et al.  Beyond spatial pooling: Fine-grained representation learning in multiple domains , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[351]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[352]  Christian Debes,et al.  Automatic fusion and classification using random forests and features extracted with deep learning , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[353]  Stephen Grossberg,et al.  Recurrent neural networks , 2013, Scholarpedia.

[354]  Ingmar Posner,et al.  Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks , 2016, AAAI.

[355]  Jia Cheng Ni,et al.  SAR automatic target recognition based on a visual cortical system , 2013, 2013 6th International Congress on Image and Signal Processing (CISP).

[356]  Vladimir Risojevic,et al.  Gabor Descriptors for Aerial Image Classification , 2011, ICANNGA.

[357]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[358]  Jianxiong Xiao,et al.  DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[359]  Huadong Guo,et al.  Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks , 2014 .

[360]  Liangpei Zhang,et al.  A universal remote sensing image quality improvement method with deep learning , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[361]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[362]  Wenhao Huang,et al.  Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning , 2014, IEEE Transactions on Intelligent Transportation Systems.

[363]  Qian Du,et al.  Using CNN-based high-level features for remote sensing scene classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[364]  Shihong Du,et al.  Learning multiscale and deep representations for classifying remotely sensed imagery , 2016 .

[365]  Viorica Patraucean,et al.  gvnn: Neural Network Library for Geometric Computer Vision , 2016, ECCV Workshops.

[366]  Yong Dou,et al.  Urban Land Use and Land Cover Classification Using Remotely Sensed SAR Data through Deep Belief Networks , 2015, J. Sensors.

[367]  Michele Volpi,et al.  Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[368]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[369]  Shiming Xiang,et al.  Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks , 2014, IEEE Geoscience and Remote Sensing Letters.

[370]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[371]  Jon Atli Benediktsson,et al.  Advances in Hyperspectral Image Classification: Earth Monitoring with Statistical Learning Methods , 2013, IEEE Signal Processing Magazine.

[372]  Geoffrey E. Hinton,et al.  A Better Way to Pretrain Deep Boltzmann Machines , 2012, NIPS.

[373]  Ian D. Reid,et al.  Multi-modal Auto-Encoders as Joint Estimators for Robotics Scene Understanding , 2016, Robotics: Science and Systems.

[374]  Jonathan Cheung-Wai Chan,et al.  Hyperspectral image classification using two-channel deep convolutional neural network , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[375]  Maria Pantoja,et al.  Introduction to Deep Learning , 2018, Deep Learning.

[376]  Pooja Gupta,et al.  Using deep learning to enhance head and neck cancer diagnosis and classification , 2018, 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA).

[377]  Ryosuke Shibasaki,et al.  Estimating crop yields with deep learning and remotely sensed data , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[378]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[379]  Jing Huang,et al.  Vehicle detection in urban point clouds with orthogonal-view convolutional neural network , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[380]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[381]  Haiyan Guan,et al.  Automated Detection of Urban Road Manhole Covers Using Mobile Laser Scanning Data , 2015, IEEE Transactions on Intelligent Transportation Systems.

[382]  Dongmei Chen,et al.  Change detection from remotely sensed images: From pixel-based to object-based approaches , 2013 .

[383]  Peijun Du,et al.  Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging , 2016, Neurocomputing.

[384]  David P. Williams Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[385]  Shuang Wang,et al.  Polarimetric SAR images classification using deep belief networks with learning features , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[386]  Kiyoshi Tanaka,et al.  ArtGAN: Artwork synthesis with conditional categorical GANs , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[387]  Jie Geng,et al.  High-Resolution SAR Image Classification via Deep Convolutional Autoencoders , 2015, IEEE Geoscience and Remote Sensing Letters.

[388]  Andrea Vedaldi,et al.  Understanding deep image representations by inverting them , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[389]  Cheng Wang,et al.  AUTOMATED EXTRACTION OF 3D TREES FROM MOBILE LIDAR POINT CLOUDS , 2014 .

[390]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[391]  Ligang Liu,et al.  Projective Feature Learning for 3D Shapes with Multi‐View Depth Images , 2015, Comput. Graph. Forum.

[392]  Eli Saber,et al.  Classification of remote sensed images using random forests and deep learning framework , 2016, Remote Sensing.

[393]  Jun Wu,et al.  A Hierarchical Oil Tank Detector With Deep Surrounding Features for High-Resolution Optical Satellite Imagery , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[394]  Robert James Firth A Novel Recurrent Convolutional Neural Network for Ocean and Weather Forecasting , 2016 .

[395]  James M. Keller,et al.  Extension of the Fuzzy Integral for General Fuzzy Set-Valued Information , 2014, IEEE Transactions on Fuzzy Systems.

[396]  Qiongji Jin,et al.  Design of Deep Belief Networks for Short-Term Prediction of Drought Index Using Data in the Huaihe River Basin , 2012 .

[397]  Chunhong Pan,et al.  Building extraction from multi-source remote sensing images via deep deconvolution neural networks , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[398]  Arnt-Borre Salberg,et al.  Detection of seals in remote sensing images using features extracted from deep convolutional neural networks , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[399]  Jin Zhao,et al.  Terrain classification with Polarimetric SAR based on Deep Sparse Filtering Network , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[400]  Mostafa Mehdipour-Ghazi,et al.  Plant identification using deep neural networks via optimization of transfer learning parameters , 2017, Neurocomputing.

[401]  Bo Li,et al.  3D fully convolutional network for vehicle detection in point cloud , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[402]  Reza Bosagh Zadeh,et al.  FusionNet: 3D Object Classification Using Multiple Data Representations , 2016, ArXiv.

[403]  Li Deng,et al.  A tutorial survey of architectures, algorithms, and applications for deep learning , 2014, APSIPA Transactions on Signal and Information Processing.

[404]  Xuchu Yu,et al.  Semi-supervised classification of hyperspectral imagery based on stacked autoencoders , 2016, International Conference on Digital Image Processing.