Orthotopic set-membership parameter estimation of fractional order model

This paper presents a new orthotopic set-membership method for the identification of linear fractional orders systems. This method consists in recursively constructing an outer orthotope that contains all feasible parameters when the probability distribution of the disturbances is unknown but bounded and when the differentiation orders are known. A numerical example shows the effectiveness of the proposed method.

[1]  M. Aoun,et al.  Systèmes linéaires non entiers et identification par bases orthogonales non entières , 2005 .

[2]  Er-Wei Bai,et al.  Bounded error parameter estimation: a sequential analytic center approach , 1999, IEEE Trans. Autom. Control..

[3]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[4]  Olivier Cois,et al.  Systèmes linéaires non entiers et identification par modèle non entier : application en thermique , 2002 .

[5]  Gérard Favier,et al.  Estimation robuste et recursive de domaines d'incertitude parametrique orthotopiques , 1993 .

[6]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[7]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .

[8]  Messaoud Amairi Recursive Set-Membership Parameter Estimation Using Fractional Model , 2015, Circuits Syst. Signal Process..

[9]  M. N. Abdelkrim,et al.  Set membership parameter estimation of linear fractional systems using parallelotopes , 2012, International Multi-Conference on Systems, Sygnals & Devices.

[10]  J. P. Norton,et al.  Fast and robust algorithm to compute exact polytope parameter bounds , 1990 .

[11]  H. Witsenhausen Sets of possible states of linear systems given perturbed observations , 1968 .

[12]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[13]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[14]  M Amairi,et al.  Guaranteed output-error identičation of fractional order model , 2010, 2010 2nd International Conference on Advanced Computer Control.