Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors

[1]  Min Luo,et al.  Ti3C2Tx/carbon nanotube/porous carbon film for flexible supercapacitor , 2022 .

[2]  Yongsong Luo,et al.  MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitor. , 2021, Angewandte Chemie.

[3]  X. Hou,et al.  In situ reduced MXene/AuNPs composite toward enhanced charging/discharging and specific capacitance , 2021, Journal of Advanced Ceramics.

[4]  Xiaojuan Jin,et al.  Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors , 2021 .

[5]  E. Stavrinidou,et al.  Toughening of a Soft Polar Polythiophene through Copolymerization with Hard Urethane Segments , 2020, Advanced science.

[6]  Zhongchang Wang,et al.  Facile fabrication of novel Ti3C2T -supported fallen leaf-like Bi2S3 nanopieces by a combined local-repulsion and macroscopic attraction strategy with enhanced symmetrical supercapacitor performance , 2021 .

[7]  Jie Zhou,et al.  MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior energy storage , 2020 .

[8]  Y. Geng,et al.  Molecular Engineering and Morphology Control of Polythiophene:Nonfullerene Acceptor Blends for High‐Performance Solar Cells , 2020, Advanced Energy Materials.

[9]  W. Zhong,et al.  Arbitrary deformable and high-strength electroactive polymer/MXene anti-exfoliative composite films assembled into high performance, flexible all-solid-state supercapacitors. , 2020, Nanoscale.

[10]  Q. Fu,et al.  MXene/N-Doped Carbon Foam with 3D Hollow Neuron-Like Architecture for Freestanding, Highly Compressible All Solid-State Supercapacitors. , 2020, ACS applied materials & interfaces.

[11]  Dongbin Xiong,et al.  Integrated NiCo2-LDHs@MXene/rGO aerogel: Componential and structural engineering towards enhanced performance stability of hybrid supercapacitor , 2020 .

[12]  Qinghua Zhang,et al.  Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for supercapacitors , 2020 .

[13]  Yanmin Wang,et al.  Preparation of Polyaniline onto dl-Tartaric Acid Assembled MXene Surface as an Electrode Material for Supercapacitors , 2020 .

[14]  Xianqing Liang,et al.  Flexible freestanding all-MXene hybrid films with enhanced capacitive performance for powering a flex sensor , 2020, Journal of Materials Chemistry A.

[15]  Youlong Xu,et al.  Facile strategy of hollow polyaniline nanotubes supported on Ti3C2-MXene nanosheets for High-performance symmetric supercapacitors. , 2020, Journal of colloid and interface science.

[16]  Dylan Y. Hegh,et al.  Freezing Titanium Carbide (MXenes) Aqueous Dispersions for Ultra-long-term Storage. , 2020, ACS applied materials & interfaces.

[17]  Yue Zhao,et al.  Improving electrocatalytic activities of FeCo2O4@FeCo2S4@PPy electrodes by surface/interface regulation , 2020, Nano Energy.

[18]  Tong Pan,et al.  Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance , 2020 .

[19]  Qinghua Zhang,et al.  Atomic Engineering Catalyzed MnO2 Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density , 2020, Advanced materials.

[20]  K. Kar,et al.  Heteroatom doped graphene engineering for energy storage and conversion , 2020 .

[21]  K. Krishnamoorthy,et al.  Carbothermal conversion of siloxene sheets into silicon-oxy-carbide lamellae for high-performance supercapacitors , 2020, Chemical Engineering Journal.

[22]  Alexander B. Brady,et al.  Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene , 2020, Advanced Materials Interfaces.

[23]  Jianjian Lin,et al.  Synthesis of an MXene/polyaniline composite with excellent electrochemical properties , 2020 .

[24]  Weiqing Yang,et al.  Unraveling and Regulating Self-Discharge Behavior of Ti3C2Tx MXene-Based Supercapacitors. , 2020, ACS nano.

[25]  Y. Gogotsi,et al.  Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. , 2020, ACS nano.

[26]  H. Cui,et al.  Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 , 2020 .

[27]  G. Zeng,et al.  In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: Synergism of interfacial coupling and hole-transfer , 2020 .

[28]  N. Shinde,et al.  Controlled nanosheet morphology of titanium carbide Ti3C2Tx MXene via drying methods and its electrochemical analysis , 2020, Journal of Solid State Electrochemistry.

[29]  Chao Zhang,et al.  Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage , 2020, Nature Communications.

[30]  Zhengnan Tian,et al.  3D Printing of Porous Nitrogen-Doped Ti3C2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors. , 2020, ACS nano.

[31]  Bin Huang,et al.  Highly flexible and low capacitance loss supercapacitor electrode based on hybridizing decentralized conjugated polymer chains with MXene , 2019 .

[32]  Micah J. Green,et al.  Layer-by-layer Assembly of Polyaniline Nanofiber and MXene Thin Film Electrodes for Electrochemical Energy Storage. , 2019, ACS applied materials & interfaces.

[33]  X. Ji,et al.  Facile synthesis of nitrogen and oxygen co-doped C@Ti3C2 MXene for high performance symmetric supercapacitors , 2019, Journal of Power Sources.

[34]  Zhanhu Guo,et al.  Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes , 2019, Electrochimica Acta.

[35]  S. Haigh,et al.  3D Printing of Freestanding MXene Architectures for Current‐Collector‐Free Supercapacitors , 2019, Advanced materials.

[36]  Xi-hong Lu,et al.  Dendrite‐Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn‐Ion Batteries , 2019, Advanced materials.

[37]  Baoxing Xu,et al.  Multilayer Polypyrrole Nanosheets with Self‐Organized Surface Structures for Flexible and Efficient Solar–Thermal Energy Conversion , 2019, Advanced materials.

[38]  Dandan Yang,et al.  Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors , 2019, Applied Surface Science.

[39]  Zhiyu Wang,et al.  Highly Conductive Ti3 C2 Tx MXene Hybrid Fibers for Flexible and Elastic Fiber-Shaped Supercapacitors. , 2019, Small.

[40]  Haifeng Dong,et al.  Engineered Exosome-Mediated Near-Infrared-II Region V2C Quantum Dot Delivery for Nucleus-Target Low-Temperature Photothermal Therapy. , 2019, ACS nano.

[41]  J. Yun,et al.  Architecturally Robust Graphene-Encapsulated MXene Ti2CT x@Polyaniline Composite for High-Performance Pouch-Type Asymmetric Supercapacitor. , 2018, ACS applied materials & interfaces.

[42]  Jinyuan Zhou,et al.  A Solid-State Fibriform Supercapacitor Boosted by Host-Guest Hybridization between the Carbon Nanotube Scaffold and MXene Nanosheets. , 2018, Small.

[43]  Zili Wu,et al.  One-Step Synthesis of Nb2 O5 /C/Nb2 C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution. , 2018, ChemSusChem.

[44]  Youwei Wang,et al.  Theranostic 2D Tantalum Carbide (MXene) , 2018, Advanced materials.

[45]  Han Lin,et al.  A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. , 2017, Journal of the American Chemical Society.

[46]  Young In Jhon,et al.  Metallic MXene Saturable Absorber for Femtosecond Mode‐Locked Lasers , 2017, Advanced materials.

[47]  Sang-Hoon Park,et al.  Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance , 2017, Advanced materials.

[48]  Yury Gogotsi,et al.  Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance , 2017 .

[49]  Pierre-Louis Taberna,et al.  Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides , 2017, Nature Energy.

[50]  F. Du,et al.  Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene , 2017 .

[51]  N. Klyui,et al.  Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method , 2017 .

[52]  J. Carrasco,et al.  Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors , 2017, Nature Communications.

[53]  A. Du,et al.  2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction , 2017 .

[54]  Minshen Zhu,et al.  Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene , 2016 .

[55]  Jie Wang,et al.  Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors , 2016 .

[56]  H. Alshareef,et al.  Direct Chemical Synthesis of MnO2 Nanowhiskers on Transition-Metal Carbide Surfaces for Supercapacitor Applications. , 2016, ACS applied materials & interfaces.

[57]  Y. Gogotsi,et al.  H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. , 2016, Nanoscale.

[58]  Yury Gogotsi,et al.  Pseudocapacitive Electrodes Produced by Oxidant‐Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene) , 2016, Advanced materials.

[59]  P. Milani,et al.  Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition , 2015 .

[60]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.