The Isotonic Regression Problem and its Dual

Abstract The isotonic regression problem is to minimize Σt i = 1 [gi − xi]2wi subject to xi ≤ xj when where wi>0 and gi (i= 1, 2, …, k) are given and is a specified partial ordering on {1, 2, …, k}. The solution is called the isotonic regression on g. We formulate a generalization of this problem and calculate its Fenchel dual. A function of the isotonic regression also solves these problems. Problems in inventory theory and statistics are identified as dual isotonic regression problems.

[1]  H. D. Brunk,et al.  AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .

[2]  H. D. Brunk Maximum Likelihood Estimates of Monotone Parameters , 1955 .

[3]  Constance Van Eeden Maximum Likelihood Estimation Of Ordered Probabilities1) , 1956 .

[4]  Constance Van Eeden,et al.  Maximum Likelihood Estimation of Partially or Completely Ordered Parameters 1)1)Report SP 52 of the Statistical Department of the Mathematical Centre, Amsterdam.. I , 1957 .

[5]  Constance van Eeden,et al.  Note on two Methods for Estimating Ordered Parameters of Probability Distributions 1)1)Report SP 55 of the Statistical Department of the Mathematical Centre, Amsterdam. , 1957 .

[6]  H. D. Brunk,et al.  Minimizing integrals in certain classes of monotone functions. , 1957 .

[7]  Constance Van Eeden,et al.  Maximum Likelihood Estimation of Partially or Completely Ordered Parameters. II , 1957 .

[8]  D. J. Bartholomew,et al.  A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II , 1959 .

[9]  W. A. Thompson The Problem of Negative Estimates of Variance Components , 1962 .

[10]  A geometric representation for pairs of dual quadratic or linear programs , 1962 .

[11]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[12]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[13]  H. D. Brunk Conditional Expectation Given A $\sigma$-Lattice and Applications , 1965 .

[14]  D. L. Hanson,et al.  Maximum Likelihood Estimation of the Distributions of Two Stochastically Ordered Random Variables , 1966 .

[15]  George L. Nemhauser,et al.  Optimal capacity expansion , 1968 .

[16]  A GENERALIZED RADON-NIKODYM DERIVATIVE , 1970 .

[17]  J. Kruskal Monotone regression: Continuity and differentiability properties , 1971 .

[18]  Jr. Arthur F. Veinott Least d-Majorized Network Flows with Inventory and Statistical Applications , 1971 .

[19]  George B. Dantzig A Control Problem of Bellman , 1971 .