Effective-area elasticity and tension of micromanipulated membranes.

We evaluate the effective Hamiltonian governing, at the optically resolved scale, the elastic properties of micromanipulated membranes. We identify floppy, entropic-tense and stretched-tense regimes, representing different behaviors of the effective-area elasticity of the membrane. The corresponding effective tension depends on the microscopic parameters (total area, bending rigidity) and on the optically visible area, which is controlled by the imposed external constraints. We successfully compare our predictions with recent data on micropipette experiments.

[1]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[2]  I. Bivas,et al.  Bending elasticity and thermal fluctuations of lipid membranes. Theoretical and experimental requirements , 1989 .

[3]  W. Helfrich,et al.  Undulations, steric interaction and cohesion of fluid membranes , 1984 .

[4]  F. MacKintosh,et al.  Microrheology of biopolymer-membrane complexes. , 2000, Physical review letters.

[5]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[6]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[7]  T. Fischer,et al.  Line tension of Langmuir monolayer phase boundaries determined with optical tweezers. , 2000 .

[8]  Lubensky,et al.  Hydrodynamics and dynamic fluctuations of fluid membranes. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  L. Peliti,et al.  Effects of thermal fluctuations on systems with small surface tension. , 1985, Physical review letters.

[10]  Rudolf Podgornik,et al.  Statistical thermodynamics of surfaces, interfaces, and membranes , 1995 .

[11]  Coarse-Grained Surface Energies and Temperature-Induced Anchoring Transitions in Nematic Liquid Crystals , 1999, cond-mat/9905070.

[12]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[13]  U. Seifert The concept of effective tension for fluctuating vesicles , 1995 .

[14]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[15]  H. Kleinert Thermal softening of curvature elasticity in membranes , 1986 .

[16]  Evans,et al.  Entropy-driven tension and bending elasticity in condensed-fluid membranes. , 1990, Physical review letters.

[17]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[18]  Samuel A. Safran,et al.  Statistical Thermodynamics of Surfaces , 1994 .

[19]  S. Leibler,et al.  Vanishing tension of fluctuating membranes , 1991 .

[20]  Milner,et al.  Dynamical fluctuations of droplet microemulsions and vesicles. , 1987, Physical review. A, General physics.

[21]  R. Hochmuth,et al.  Micropipette aspiration of living cells. , 2000, Journal of biomechanics.

[22]  A. Bensimon,et al.  The Elasticity of a Single Supercoiled DNA Molecule , 1996, Science.