Space- and time-resolved mapping of ionic dynamic and electroresistive phenomena in lateral devices.

A scanning probe microscopy-based technique for probing local ionic and electronic transport and their dynamic behavior on the 10 ms to 10 s scale is presented. The time-resolved Kelvin probe force microscopy (tr-KPFM) allows mapping of surface potential in both space and time domains, visualizing electronic and ionic charge dynamics and separating underlying processes based on their time responses. Here, tr-KPFM is employed to explore the interplay of the adsorbed surface ions and bulk oxygen vacancies and their role in the resistive switching in a Ca-substituted bismuth ferrite thin film.

[1]  W. Shockley,et al.  Mobile electric charges on insulating oxides with application to oxide covered silicon p-n junctions☆ , 1964 .

[2]  Konstantin K. Likharev,et al.  Hybrid CMOS/Nanoelectronic Circuits: Opportunities and Challenges , 2008 .

[3]  Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device , 2005, cond-mat/0506621.

[4]  Sergei V. Kalinin,et al.  Nonlinear transport imaging by scanning impedance microscopy , 2004 .

[5]  Sergei V. Kalinin,et al.  Surface potential at surface-interface junctions in SrTiO 3 bicrystals , 2000 .

[6]  Robert A. Huggins,et al.  Electrochemical Methods for Determining Kinetic Properties of Solids , 1978 .

[7]  G. Voth,et al.  Kinetics of proton migration in liquid water. , 2010, The journal of physical chemistry. B.

[8]  Sergei V. Kalinin,et al.  Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. , 2009, Nature materials.

[9]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[10]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[11]  Sergei V. Kalinin,et al.  Half-harmonic Kelvin probe force microscopy with transfer function correction , 2012 .

[12]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[13]  Sergei V. Kalinin,et al.  Screening Phenomena on Oxide Surfaces and Its Implications for Local Electrostatic and Transport Measurements , 2004 .

[14]  Seung Jin Kim,et al.  Detection of electrically formed photosensitive area in Ca-doped BiFeO3 thin films , 2013 .

[15]  Sergei V. Kalinin,et al.  Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase , 2009 .

[16]  Sergei V. Kalinin,et al.  Scanning impedance microscopy of an active Schottky barrier diode , 2002 .

[17]  Amit Kumar,et al.  Dynamic piezoresponse force microscopy: Spatially resolved probing of polarization dynamics in time and voltage domains , 2012 .

[18]  Amit Kumar,et al.  Real-space mapping of dynamic phenomena during hysteresis loop measurements: Dynamic switching spectroscopy piezoresponse force microscopy , 2011 .

[19]  Sergei V. Kalinin,et al.  Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy , 2003 .

[20]  N. Agmon,et al.  Geminate recombination in excited-state proton-transfer reactions: Numerical solution of the Debye-Smoluchowski equation with backreaction and comparison with experimental results , 1988 .

[21]  M. Beasley,et al.  Design and performance of a practical variable-temperature scanning tunneling potentiometry system. , 2008, The Review of scientific instruments.

[22]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[23]  Martijn Kemerink,et al.  Real versus measured surface potentials in scanning Kelvin probe microscopy. , 2008, ACS nano.

[24]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[25]  M. Lux‐Steiner,et al.  Resolution of Kelvin probe force microscopy in ultrahigh vacuum: comparison of experiment and simulation , 2003 .

[26]  D. Ginger,et al.  Time-resolved electrostatic force microscopy of polymer solar cells , 2006, Nature materials.

[27]  Sergei V. Kalinin,et al.  Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface , 2002 .

[28]  K. Hinzer,et al.  Electrical Scanning Probe Microscopy: Investigating the Inner Workings of Electronic and Optoelectronic Devices , 2005 .

[29]  Rainer Waser,et al.  Nanoelectronics and Information Technology , 2012 .

[30]  F. Prinz,et al.  Ionic and electronic impedance imaging using atomic force microscopy , 2004 .

[31]  Sergei V. Kalinin,et al.  Scanning frequency mixing microscopy of high-frequency transport behavior at electroactive interfaces , 2006 .

[32]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[33]  D. Brunel,et al.  Imaging the operation of a carbon nanotube charge sensor at the nanoscale. , 2010, ACS nano.

[34]  P. Girard,et al.  ELECTROSTATIC FORCES ACTING ON THE TIP IN ATOMIC FORCE MICROSCOPY : MODELIZATION AND COMPARISON WITH ANALYTIC EXPRESSIONS , 1997 .

[35]  Sergei V. Kalinin,et al.  Local Phenomena in Oxides by Advanced Scanning Probe Microscopy , 2005 .

[36]  Sascha Sadewasser,et al.  Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces , 2012 .

[37]  R. Maboudian,et al.  Charging and discharging behavior in dielectric-coated MEMS electrodes probed by Kelvin probe force microscopy , 2012 .

[38]  V. Palermo,et al.  Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials. , 2010, Accounts of Chemical Research.

[39]  Stephen Jesse,et al.  Band excitation in scanning probe microscopy: sines of change , 2011 .

[40]  Yossi Rosenwaks,et al.  Reconstruction of electrostatic force microscopy images , 2005 .

[41]  Department of Physics,et al.  Real space imaging of the microscopic origins of the ultrahigh dielectric constant in polycrystalline CaCu3Ti4O12 , 2005 .

[42]  A. Rappe,et al.  Reversible chemical switching of a ferroelectric film. , 2009, Physical Review Letters.

[43]  Noam Agmon,et al.  Geminate Recombination in Excited-State Proton Transfer Reactions: Numerical Solution of the Debye-Smoluchowski Equation with Backreaction and Comparison with Experimental Results , 1988 .

[44]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[45]  Rui Wang,et al.  Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate. , 2011, ACS nano.

[46]  M. Sommer,et al.  Evolution of potential distributions during the charging of nano-structured metal oxide films in air as response to sudden voltage application , 2010 .

[47]  G. Lanzani,et al.  Electric field and charge distribution imaging with sub-micron resolution in an organic Thin-Film Transistor , 2012 .

[48]  D. Bayerl,et al.  Three‐Dimensional Kelvin Probe Microscopy for Characterizing In‐Plane Piezoelectric Potential of Laterally Deflected ZnO Micro‐/Nanowires , 2012 .

[49]  Sergei V. Kalinin,et al.  Local potential and polarization screening on ferroelectric surfaces , 2001 .

[50]  A. Ando,et al.  Insulation degradation behavior of multilayer ceramic capacitors clarified by Kelvin probe force microscopy under ultra-high vacuum , 2013 .

[51]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[52]  Stephen Jesse,et al.  Open-loop band excitation Kelvin probe force microscopy , 2012, Nanotechnology.

[53]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .

[54]  G. L. Schnable,et al.  Behavior of surface ions on semiconductor devices , 1968 .

[55]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[56]  Sergei V. Kalinin,et al.  Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies , 2002, cond-mat/0206454.

[57]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[58]  Paul Muralt,et al.  Scanning tunneling microscopy and potentiometry on a semiconductor heterojunction , 1987 .

[59]  Sergei V. Kalinin,et al.  Application of spectromicroscopy tools to explore local origins of sensor activity in quasi-1D oxide nanostructures , 2006, Nanotechnology.

[60]  Vladimir S. Bagotsky,et al.  Fuel Cells: Problems and Solutions , 2009 .

[61]  D. M. Leeuw,et al.  Localizing trapped charge carriers in NO2 sensors based on organic field-effect transistors , 2012 .

[62]  V. Sysoev,et al.  Electric field induced dynamics of charged species in metal oxide devices: Diffusion equation analysis , 2011 .

[63]  D. Ginger,et al.  Scanning Kelvin probe imaging of the potential profiles in fixed and dynamic planar LECs. , 2007, Journal of the American Chemical Society.

[64]  D. Yan,et al.  Surface potential images of polycrystalline organic semiconductors obtained by Kelvin probe force microscopy , 2009 .

[65]  Dawn A. Bonnell,et al.  Spatially localized dynamic properties of individual interfaces in semiconducting oxides , 2000 .

[66]  Robert A. Huggins,et al.  Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films , 1980 .

[67]  A. F. Tillack,et al.  Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics. , 2012, Nano letters.

[68]  A. Rappe,et al.  Stabilization of monodomain polarization in ultrathin PbTiO3 films. , 2006, Physical review letters.

[69]  S. Pennycook,et al.  Prominent electrochromism through vacancy-order melting in a complex oxide , 2012, Nature Communications.

[70]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[71]  P. Heremans,et al.  Electric field confinement effect on charge transport in organic field-effect transistors. , 2012, Physical review letters.

[72]  R. Klanner,et al.  Charge losses in segmented silicon sensors at the Si–SiO2 interface , 2012, 1207.6538.

[73]  Patrick Pons,et al.  Kelvin probe microscopy for reliability investigation of RF-MEMS capacitive switches , 2008, Microelectron. Reliab..

[74]  Sergei V. Kalinin,et al.  Potential and Impedance Imaging of Polycrystalline BiFeO3 Ceramics , 2004 .