Trends in ultrashort and ultrahigh power laser pulses based on optical parametric chirped pulse amplification

Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification (OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of few-optical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively.

[1]  Ferenc Krausz,et al.  Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier. , 2007, Optics letters.

[2]  Ruxin Li,et al.  Multiterawatt laser system based on optical parametric chirped pulse amplification. , 2002, Optics letters.

[3]  D Neely,et al.  Generation of terawatt pulses by use of optical parametric chirped pulse amplification. , 2000, Applied optics.

[4]  Generation of 11-fs pulses tunable across the visible by optical parametric amplification , 1997 .

[5]  Yuxin Leng,et al.  Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier. , 2007, Optics express.

[6]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[7]  K R Wilson,et al.  Broadly tunable 30-fs pulses produced by optical parametric amplification. , 1994, Optics letters.

[8]  Takao Fuji,et al.  Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. , 2002, Optics letters.

[9]  Klaus Ertel,et al.  ASE suppression in a high energy Titanium sapphire amplifier. , 2008, Optics express.

[10]  Yiting Fei,et al.  Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate. , 2006, Optics letters.

[11]  E. Riedle,et al.  Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. , 1997, Optics letters.

[12]  Akira Shirakawa,et al.  Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification , 1999 .

[13]  O. Chalus,et al.  Suppression of parasitic lasing in high energy, high repetition rate Ti:sapphire laser amplifiers. , 2012, Optics letters.

[14]  Ian N. Ross,et al.  The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers , 1997 .

[15]  Zhanggui Hu,et al.  Large LBO crystal growth at 2 kg-level , 2011 .

[16]  V Pervak,et al.  Chirped-pulse amplification of laser pulses with dispersive mirrors. , 2009, Optics express.

[17]  Zhiyi Wei,et al.  High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. , 2011, Optics letters.

[18]  Oscar E. Martínez,et al.  3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region , 1987 .

[19]  J. W. Yoon,et al.  Generation of high-contrast, 30 fs, 1.5 PW laser pulses , 2012, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[20]  M. Galimberti,et al.  Recent developments on the Vulcan High Power Laser Facility , 2013, Europe Optics + Optoelectronics.

[21]  Jinkui Tang,et al.  Conclusion and Perspective , 2015 .

[22]  Vladislav Ginzburg,et al.  Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals , 2007 .

[23]  K Yamakawa,et al.  0.85-PW, 33-fs Ti:sapphire laser. , 2003, Optics letters.

[24]  Jeffrey A. Squier,et al.  Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification , 1997 .

[25]  Todd Ditmire,et al.  Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier. , 2010, Applied optics.

[26]  N. N. Rukavishnikov,et al.  200 TW 45 fs laser based on optical parametric chirped pulse amplification , 2006 .

[27]  S. Silvestri,et al.  Ultrafast optical parametric amplifiers , 2003 .

[28]  J. Gordon,et al.  Negative dispersion using pairs of prisms. , 1984, Optics letters.

[29]  Algis S. Piskarskas,et al.  Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses , 1993 .

[30]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[31]  Yuxin Leng,et al.  High-contrast 2.0 Petawatt Ti:sapphire laser system. , 2013, Optics express.

[32]  Ferenc Krausz,et al.  Laser review: Basic concepts and current status of the Petawatt Field Synthesizer: a new approach to ultrahigh field generation (「高強度レーザーの時間・空間制御技術の新展開」特集号) , 2009 .

[33]  F. Krausz,et al.  High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers. , 2011, Optics express.

[34]  T. Norris,et al.  Production of 30-fs pulses tunable throughout the visible spectral region by a new technique in optical parametric amplification. , 1996, Optics letters.

[35]  A. Dubietis,et al.  Trends in chirped pulse optical parametric amplification , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  Robert L. Byer,et al.  Optical Parametric Oscillation and Amplification Introduction , 1993 .

[37]  Audrius Dubietis,et al.  Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal , 1992 .

[38]  Jonathan D. Zuegel,et al.  High-energy petawatt capability for the omega laser , 2005 .

[39]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .

[40]  A. Piskarskas,et al.  Progress in Chirped Pulse Optical Parametric Amplifiers , 2004 .

[41]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[42]  Zhanggui Hu,et al.  High-energy noncollinear optical parametric-chirped pulse amplification in LBO at 800 nm. , 2013, Optics letters.

[43]  P. Corkum,et al.  Applications of ultrafast wavefront rotation in highly nonlinear optics , 2014 .

[44]  Takayoshi Kobayashi,et al.  Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared. , 1998, Optics letters.

[45]  A. Piskarskas,et al.  Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams , 2002 .