A Novel Complex Cavity for Second-Harmonic Subterahertz Gyrotrons: a Tradeoff Between Engineering Tolerance and Mode Selection

[1]  D. Wagner,et al.  Improvement of the Output Mode Purity of a Complex-Cavity Resonator for a Frequency-Tunable Sub-THz Gyrotron , 2021, IEEE Transactions on Electron Devices.

[2]  M. Thumm,et al.  Large Power Increase Enabled by High-Q Diamond-Loaded Cavities for Terahertz Gyrotrons , 2021, Journal of Infrared, Millimeter, and Terahertz Waves.

[3]  Y. Tatematsu,et al.  Novel and Emerging Applications of the Gyrotrons Worldwide: Current Status and Prospects , 2021, Journal of Infrared, Millimeter, and Terahertz Waves.

[4]  M. Thumm,et al.  Starting currents of modes in cylindrical cavities with mode-converting corrugations for second-harmonic gyrotrons , 2021, Journal of Infrared, Millimeter, and Terahertz Waves.

[5]  M. Thumm,et al.  Mode Discrimination by Lossy Dielectric Rods in Cavities of Second-Harmonic Gyrotrons , 2021, Journal of Infrared, Millimeter, and Terahertz Waves.

[6]  M. Glyavin,et al.  Gyrotrons , 2020 .

[7]  M. Thumm State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers , 2020, Journal of Infrared, Millimeter, and Terahertz Waves.

[8]  V. Shcherbinin,et al.  Selectivity Properties of Cylindrical Waveguides with Longitudinal Wall Corrugations for Second-Harmonic Gyrotrons , 2019, Journal of Infrared, Millimeter, and Terahertz Waves.

[9]  V. Shcherbinin,et al.  Coupled-Mode Theory of an Irregular Waveguide with Impedance Walls , 2019, Journal of Infrared, Millimeter, and Terahertz Waves.

[10]  V. Shcherbinin,et al.  Cutoff Frequencies of a Dielectric-Loaded Rectangular Waveguide With Arbitrary Anisotropic Surface Impedance , 2019, IEEE Transactions on Microwave Theory and Techniques.

[11]  Yu. S. Oparina,et al.  Improvement of Mode Selectivity of High-Harmonic Gyrotrons by Using Operating Cavities with Short Output Reflectors , 2018, Journal of Infrared, Millimeter, and Terahertz Waves.

[12]  V. Shcherbinin,et al.  Effect of Cavity Ohmic Losses on Efficiency of Low-Power Terahertz Gyrotron , 2017, IEEE Transactions on Electron Devices.

[13]  V. Shcherbinin,et al.  Cylindrical Cavity with Distributed Longitudinal Corrugations for Second-Harmonic Gyrotrons , 2017, Journal of Infrared, Millimeter, and Terahertz Waves.

[14]  Vitalii I. Shcherbinin,et al.  Cylindrical Cavity with Distributed Longitudinal Corrugations for Second-Harmonic Gyrotrons , 2017 .

[15]  E. Khutoryan,et al.  The Development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy , 2015 .

[16]  M. Glyavin,et al.  Novel approach to the theory of longitudinally inhomogeneous lossy waveguides , 2013, 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves.

[17]  A. Sedov,et al.  Low-voltage gyrotrons , 2013 .

[18]  Yuriy K. Kalynov,et al.  Klystron-like cavity with mode transformation for high-harmonic terahertz gyrotrons , 2013 .

[19]  K. Chu,et al.  A study of sub-terahertz and terahertz gyrotron oscillators , 2012 .

[20]  T. Idehara,et al.  Continuously Frequency Tunable High Power Sub-THz Radiation Source—Gyrotron FU CW VI for 600 MHz DNP-NMR Spectroscopy , 2010 .

[21]  C. Du,et al.  Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit , 2010 .

[22]  Baruch Levush,et al.  MAGY: a time-dependent code for simulation of slow and fast microwave sources , 1998 .

[23]  L. Shenggang,et al.  Third-harmonic complex cavity gyrotron self-consistent nonlinear analysis , 1997 .

[24]  D. Wagner,et al.  Improved gyrotron cavity with high quality factor , 1995 .

[25]  I. Ogawa,et al.  Mode competition in a high harmonic gyrotron , 1992 .

[26]  T. Idehara,et al.  Competition between fundamental and second‐harmonic operations in a submillimeter wave gyrotron , 1991 .

[27]  R. Temkin,et al.  Submillimeter-wave harmonic gyrotron experiment , 1990 .

[28]  W. Lawson,et al.  Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation , 1989 .

[29]  M. E. Read,et al.  Self-consistent field model for the complex cavity gyrotron , 1988 .

[30]  E. Borie,et al.  A complex cavity with mode conversion for gyrotrons , 1988 .

[31]  E. Borie,et al.  Resonator design studies for a 150 GHz gyrotron at Kf K , 1988 .

[32]  V. E. Zapevalov,et al.  Coupled cavities with mode conversion in gyrotrons , 1987 .

[33]  G. Faillon,et al.  A 100 GHz gyrotron—results and future prospects , 1986 .

[34]  E. Borie,et al.  Calculation of eigenmodes of tapered gyrotron resonators , 1986 .

[35]  B. G. Danly,et al.  Generalized nonlinear harmonic gyrotron theory , 1986 .

[36]  K. Felch,et al.  A 60 GHz, 200 kW CW gyrotron with a pure output mode† , 1984 .

[37]  Gregory S. Nusinovich,et al.  Invited paper. Powerful millimetre-wave gyrotrons , 1981 .