Acid-base responsive switching between "3+1" and "2+2" platinum complexes.

We report that the acid-base induced changes to a cyclometallated platinum complex can be used to drive the exchange of accompanying ligands with different denticities.

[1]  C. Mirkin,et al.  One-pot synthesis of an Fe(II) bis-terpyridine complex with allosterically regulated electronic properties. , 2012, Journal of the American Chemical Society.

[2]  P. J. Lusby,et al.  Half-rotation in a kinetically locked [2]catenane induced by transition metal ion substitution. , 2012, Chemical communications.

[3]  D. Leigh,et al.  A three-compartment chemically-driven molecular information ratchet. , 2012, Journal of the American Chemical Society.

[4]  P. J. Lusby,et al.  Sequential, kinetically controlled synthesis of multicomponent stereoisomeric assemblies. , 2012, Angewandte Chemie.

[5]  M. Schmittel,et al.  Reversible ON/OFF nanoswitch for organocatalysis: mimicking the locking and unlocking operation of CaMKII. , 2012, Angewandte Chemie.

[6]  Shigehisa Akine,et al.  A molecular leverage for helicity control and helix inversion. , 2011, Journal of the American Chemical Society.

[7]  I. Aprahamian,et al.  Switching through coordination-coupled proton transfer. , 2011, Angewandte Chemie.

[8]  P. J. Lusby,et al.  Dual stimuli-responsive interconvertible heteroleptic platinum coordination modes. , 2010, Chemical communications.

[9]  Kevin D. Haenni,et al.  Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles. , 2010, Journal of the American Chemical Society.

[10]  P. J. Lusby,et al.  Improved dynamics and positional bias with a second generation palladium(II)-complexed molecular shuttle. , 2010, Chemical communications.

[11]  M. F. Mayer,et al.  Actuator prototype: capture and release of a self-entangled [1]rotaxane. , 2010, Journal of the American Chemical Society.

[12]  J. Lux,et al.  A copper-based shuttling [2]rotaxane with two bidentate chelates in the axis: steric control of the motion , 2010 .

[13]  P. J. Lusby,et al.  Stimuli-responsive reversible assembly of 2D and 3D metallosupramolecular architectures. , 2009, Journal of the American Chemical Society.

[14]  J. Lux,et al.  A rapidly shuttling copper-complexed [2]rotaxane with three different chelating groups in its axis. , 2009, Angewandte Chemie.

[15]  G. Tsekouras,et al.  A surface-attached Ru complex operating as a rapid bistable molecular switch. , 2009, Chemical communications.

[16]  A. Flood,et al.  Reduction of a redox-active ligand drives switching in a Cu(I) pseudorotaxane by a bimolecular mechanism. , 2009, Journal of the American Chemical Society.

[17]  P. J. Lusby,et al.  An ion-pair template for rotaxane formation and its exploitation in an orthogonal interaction anion-switchable molecular shuttle. , 2008, Angewandte Chemie.

[18]  Laure-Emmanuelle Perret-Aebi,et al.  A switchable palladium-complexed molecular shuttle and its metastable positional isomers. , 2007, Journal of the American Chemical Society.

[19]  Kevin D. Haenni,et al.  Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition. , 2007, Journal of the American Chemical Society.

[20]  O. Wenger,et al.  Macrocycles Incorporating an Endocyclic But Non‐Sterically‐Hindering Chelate: Synthesis and Structural Studies , 2007 .

[21]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[22]  Euan R. Kay,et al.  A molecular information ratchet , 2007, Nature.

[23]  Euan R Kay,et al.  Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. , 2006, Journal of the American Chemical Society.

[24]  J. Sauvage,et al.  A Ruthenium(II)‐Complexed Rotaxane Whose Ring Incorporates a 6,6′‐Diphenyl‐2,2′‐bipyridine: Synthesis and Light‐Driven Motions , 2005 .

[25]  Jean-Pierre Sauvage,et al.  Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. , 2004, Angewandte Chemie.

[26]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[27]  M. Jiménez,et al.  A Hermaphrodite Molecule: Quantitative Copper(I)‐Directed Formation of a Doubly Threaded Assembly from a Ring Attached to a String , 2000 .

[28]  Pablo Gaviña,et al.  Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions , 1999 .

[29]  Piersandro Pallavicini,et al.  Redox‐Driven Intramolecular Anion Translocation between Transition Metal Centres , 1999 .

[30]  Vincenzo Balzani,et al.  Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. , 1997, Journal of the American Chemical Society.

[31]  Jean-Pierre Sauvage,et al.  Redox Control of the Ring-Gliding Motion in a Cu-Complexed Catenane: A Process Involving Three Distinct Geometries , 1996 .

[32]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[33]  H. Stoeckli-Evans,et al.  A new type of ‘square planar’ platinum(II) complex showing helical chirality , 1990 .