Exploring wind-driving dust species in cool luminous giants II. Constraints from photometry of M-type AGB stars

Context. The heavy mass loss observed in evolved asymptotic giant branch (AGB) stars is usually attributed to a two-stage process: atmospheric levitation by pulsation-induced shock waves, followed ...

[1]  S. Cassisi,et al.  Asymptotic Giant Branch , 2013 .

[2]  K. Eriksson,et al.  The wind of the M-type AGB star RT Virginis probed by VLTI/MIDI ⋆ , 2013, 1301.5872.

[3]  S. Hofner,et al.  Exploring wind-driving dust species in cool luminous giants III : Wind models for M-type AGB stars , 2012, 1502.00032.

[4]  Peter G. Tuthill,et al.  A close halo of large transparent grains around extreme red giant stars , 2012, Nature.

[5]  M. Lederer,et al.  Synthetic photometry for carbon-rich giants II. The effects of pulsation and circumstellar dust , 2011, 1103.5005.

[6]  S. Zeidler,et al.  Near-infrared absorption properties of oxygen-rich stardust analogs. The influence of coloring metal ions , 2011, 1101.0695.

[7]  I. Cherchneff Water in IRC+10216: a genuine formation process by shock-induced chemistry in the inner wind , 2010, 1012.5076.

[8]  T. Verhoelst,et al.  Observing and modeling the dynamic atmosphere of the low mass-loss C-star R Sculptoris at high angular resolution , 2010, 1010.1350.

[9]  W. Nowotny,et al.  Line formation in AGB atmospheres including velocity effects Molecular line profile variations of long period variables , 2010, 1002.1849.

[10]  F. Molster,et al.  The Mineralogy of Interstellar and Circumstellar Dust in Galaxies , 2010 .

[11]  L. Girardi,et al.  Synthetic photometry for carbon rich giants I. Hydrostatic dust-free models ⋆ , 2009, 0905.4415.

[12]  S. Höfner,et al.  Winds of M-type AGB stars driven by micron-sized grains , 2008 .

[13]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[14]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[15]  A. Andersen,et al.  Winds of M- and S-type AGB stars: an unorthodox suggestion for the driving mechanism , 2007, astro-ph/0702445.

[16]  P. Woitke Too little radiation pressure on dust in the winds of oxygen-rich AGB stars , 2006, astro-ph/0609392.

[17]  I. Cherchneff A chemical study of the inner winds of asymptotic giant branch stars , 2006 .

[18]  R. Tolchenov,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[19]  Y. Nakada,et al.  Mira variables in the Galactic bulge with OGLE-II data , 2005, astro-ph/0510004.

[20]  J. Blommaert,et al.  Mira variables in the OGLE bulge fields , 2005, astro-ph/0506338.

[21]  U. Jørgensen,et al.  Dynamic model atmospheres of AGB stars : IV. A comparison of synthetic carbon star spectra with observations , 2004 .

[22]  T. Sumi Extinction map of the Galactic centre: OGLE‐II Galactic bulge fields , 2003, astro-ph/0309206.

[23]  Harm Jan Habing,et al.  Asymptotic giant branch stars , 2004 .

[24]  P. Wood,et al.  Optical and near-IR spectra of O-rich Mira variables: A comparison between models and observations , 2003, astro-ph/0309689.

[25]  Th. Henning,et al.  Steps toward interstellar silicate mineralogy - VII. Spectral properties and crystallization behaviour of magnesium silicates produced by the sol-gel method , 2003 .

[26]  E. Sedlmayr,et al.  Self-consistent modeling of the outflow from the O-rich Mira IRC –20197 , 2003 .

[27]  M. Groenewegen,et al.  "Thermal" SiO radio line emission towards M-type AGB stars: A probe of circumstellar dust formation and dynamics , 2003, astro-ph/0302179.

[28]  U. Jørgensen,et al.  Dynamic model atmospheres of AGB stars - III. Effects of frequency-dependent radiative transfer , 2003 .

[29]  F. Kerschbaum,et al.  Mass loss rates of a sample of irregular and semiregular M-type AGB-variables , 2002, astro-ph/0206172.

[30]  Atlanta,et al.  UvA-DARE ( Digital Academic Repository ) Crystalline silicate dust around evolved stars . II . The crystalline silicate complexes , 2022 .

[31]  J. Bergeat,et al.  The effective temperatures of carbon-rich stars , 2001 .

[32]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[33]  M. Feast,et al.  Infrared colours for Mira-like long-period variables found in the Catalogue , 2000 .

[34]  J. Cassinelli,et al.  Introduction to Stellar Winds , 1999 .

[35]  Th. Henning,et al.  Aluminum Oxide and the Opacity of Oxygen-rich Circumstellar Dust in the 12-17 Micron Range , 1997 .

[36]  H. Shibai,et al.  Extinction spectra of corundum in the wavelengths from UV to FIR. , 1995 .

[37]  O. Heavens Handbook of Optical Constants of Solids II , 1992 .

[38]  Peter G. Martin,et al.  Shape and clustering effects on the optical properties of amorphous carbon , 1991 .

[39]  M. Feast,et al.  A period–luminosity–colour relation for Mira variables , 1989 .

[40]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[41]  G. H. Bowen,et al.  Dynamical modeling of long-period variable star atmospheres , 1988 .

[42]  R. J. Bell,et al.  Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. , 1988, Applied optics.

[43]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[44]  P. Barber Absorption and scattering of light by small particles , 1984 .

[45]  J. Lattimer,et al.  Chemical condensation sequences in supernova ejecta , 1978 .

[46]  O. Eggen Observations of large-amplitude red variables , 1975 .

[47]  N. Woolf,et al.  Mass Loss from M Stars , 1971 .

[48]  F. Low,et al.  Narrow-band Infrared Photometry of α Ori , 1970, Nature.

[49]  N. Woolf Circumstellar infrared emission from cool stars. , 1969 .

[50]  N. Wickramasinghe,et al.  MECHANISM FOR MASS EJECTION IN RED GIANTS. , 1966 .

[51]  G. Fielder Moon and Planets , 1965, Nature.

[52]  A. Schuster On the absorption and scattering of light , 1920 .