Hopf bifurcation in a partial dependent predator–prey system with multiple delays

In this paper, a partial dependent predator–prey system with multiple delays is investigated. By choosing τ1, τ2 and τ3 as bifurcating parameters, we show that Hopf bifurcations occur. In addition, by using theory of functional differential equation and Hassard's method, explicit algorithms for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived. Finally, numerical simulations are performed to support the analytical results, and the chaotic behaviors are observed.