Electrolyte and anode‐electrolyte interphase in solid‐state lithium metal polymer batteries: A perspective

The interest for solid‐state lithium metal (Li°) batteries (SSLMBs) has been growing exponentially in recent years in view of their higher energy density and eliminated safety concerns. Solid polymer electrolytes (SPEs) are soft ionic conductors which can be easily processed into thin films at industrial level; these unique features confer solid‐state Li° polymer batteries (SSLMPBs, i.e., SSLMBs utilizing SPEs as electrolytes) distinct advantages compared to SSLMBs containing other electrolytes. In this article, we briefly review recent progresses and achievements in SSLMPBs including the improvement of ionic conductivity of SPEs and their interfacial stability with Li° anode. Moreover, we outline several advanced in‐situ and ex‐situ characterizing techniques which could assist in‐depth understanding of the anode‐electrolyte interphases in SSLMPBs. This article is hoped not only to update the state‐of‐the‐art in the research on SSLMPBs but also to bring intriguing insights that could improve the fundamental properties (e.g., transport, dendrite formation, and growth, etc.) and electrochemical performance of SSLMPBs.

[1]  M. Martínez-Ibañez,et al.  Insight into the Ionic Transport of Solid Polymer Electrolytes in Polyether and Polyester Blends , 2020 .

[2]  Lixin Qiao,et al.  Trifluoromethyl-free anion for highly stable lithium metal polymer batteries , 2020 .

[3]  Lixin Qiao,et al.  Improvement of Lithium Metal Polymer Batteries through a Small Dose of Fluorinated Salt. , 2020, The journal of physical chemistry letters.

[4]  K. Amine,et al.  Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA , 2020 .

[5]  D. Mecerreyes,et al.  High Lithium Conductivity of Miscible Poly(ethylene oxide)/Methacrylic Sulfonamide Anionic Polyelectrolyte Polymer Blends , 2020 .

[6]  L. Deng,et al.  Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries , 2020 .

[7]  Xuning Feng,et al.  Mitigating Thermal Runaway of Lithium-Ion Batteries , 2020 .

[8]  M. Martínez-Ibañez,et al.  Review—Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid , 2020, Journal of The Electrochemical Society.

[9]  J. Goodenough,et al.  Behavior of Solid Electrolyte in Li-Polymer Battery with NMC Cathode via in-situ Scanning Electron Microscopy. , 2020, Nano letters.

[10]  M. Martínez-Ibañez,et al.  Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries , 2020 .

[11]  D. Mecerreyes,et al.  Toward High‐Energy‐Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes , 2020, Advanced materials.

[12]  G. G. Eshetu,et al.  From solid solution electrodes and the rocking-chair concept to today's batteries. , 2019, Angewandte Chemie.

[13]  K. Zaghib,et al.  In situ observation of solid electrolyte interphase evolution in a lithium metal battery , 2019, Communications Chemistry.

[14]  K. Zaghib,et al.  Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries , 2019, Journal of Power Sources.

[15]  Longlong Wang,et al.  Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High‐Voltage Solid‐State Lithium Metal Battery , 2019, Advanced science.

[16]  Lixin Qiao,et al.  Suppressed Mobility of Negative Charges in Polymer Electrolytes with an Ether‐Functionalized Anion , 2019, Angewandte Chemie.

[17]  G. G. Eshetu,et al.  Designer Anion Enabling Solid-State Lithium-Sulfur Batteries , 2019, Joule.

[18]  Chunmei Li,et al.  Enhanced Lithium-Ion Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. , 2019, Angewandte Chemie.

[19]  M. Martínez-Ibañez,et al.  Flowable polymer electrolytes for lithium metal batteries , 2019, Journal of Power Sources.

[20]  G. G. Eshetu,et al.  Fluorine‐Free Noble Salt Anion for High‐Performance All‐Solid‐State Lithium–Sulfur Batteries , 2019, Advanced Energy Materials.

[21]  V. Ganesan Ion transport in polymeric ionic liquids: recent developments and open questions , 2019, Molecular Systems Design & Engineering.

[22]  G. G. Eshetu,et al.  Polymeric ionic liquids for lithium-based rechargeable batteries , 2019, Molecular Systems Design & Engineering.

[23]  D. Macfarlane,et al.  Organic Ionic Plastic Crystals as Solid-State Electrolytes , 2019, Trends in Chemistry.

[24]  L. M. Rodriguez-Martinez,et al.  CHAPTER 4. Solid Electrolytes for Lithium Metal and Future Lithium-ion Batteries , 2019, Future Lithium-ion Batteries.

[25]  M. Martínez-Ibañez,et al.  Improvement of the Cationic Transport in Polymer Electrolytes with (Difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide Salts , 2019, ChemElectroChem.

[26]  Lucienne Buannic,et al.  Garnet–Polymer Composite Electrolytes: New Insights on Local Li-Ion Dynamics and Electrodeposition Stability with Li Metal Anodes , 2019, ACS Applied Energy Materials.

[27]  M. Armand,et al.  A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives , 2018, Materials Science and Engineering: R: Reports.

[28]  Heng Zhang,et al.  Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. , 2018, Angewandte Chemie.

[29]  L. M. Rodriguez-Martinez,et al.  Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes , 2018, Joule.

[30]  Li‐Zhen Fan,et al.  Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte , 2018, Energy Storage Materials.

[31]  J. Chai,et al.  The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode , 2018, Journal of Power Sources.

[32]  Yu Zhu,et al.  A Superionic Conductive, Electrochemically Stable Dual-Salt Polymer Electrolyte , 2018, Joule.

[33]  Heng Zhang,et al.  Self‐Standing Highly Conductive Solid Electrolytes Based on Block Copolymers for Rechargeable All‐Solid‐State Lithium‐Metal Batteries , 2018, Batteries & Supercaps.

[34]  Lynden A. Archer,et al.  Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries , 2018, Nature.

[35]  Long-qing Chen,et al.  Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy , 2018, Nature Communications.

[36]  L. M. Rodriguez-Martinez,et al.  Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion's Chemistry-Induced Anomalous Synergistic Effect. , 2018, Journal of the American Chemical Society.

[37]  S. Passerini,et al.  Hybrid electrolytes for lithium metal batteries , 2018, Journal of Power Sources.

[38]  Yi Cui,et al.  Materials for lithium-ion battery safety , 2018, Science Advances.

[39]  Jonas Mindemark,et al.  Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes , 2018, Progress in Polymer Science.

[40]  A. Jerschow,et al.  Probing Solid-Electrolyte Interphase (SEI) Growth and Ion Permeability at Undriven Electrolyte–Metal Interfaces Using 7Li NMR , 2018 .

[41]  L. M. Rodriguez-Martinez,et al.  Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes , 2018 .

[42]  L. M. Rodriguez-Martinez,et al.  Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries. , 2017, Angewandte Chemie.

[43]  L. M. Rodriguez-Martinez,et al.  Polymer-Rich Composite Electrolytes for All-Solid-State Li-S Cells. , 2017, The journal of physical chemistry letters.

[44]  L. M. Rodriguez-Martinez,et al.  Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell. , 2017, The journal of physical chemistry letters.

[45]  L. M. Rodriguez-Martinez,et al.  Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application , 2017 .

[46]  Thomas F. Miller,et al.  Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries. , 2017, Accounts of chemical research.

[47]  L. M. Rodriguez-Martinez,et al.  Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. , 2017, Chemical Society reviews.

[48]  Xingguo Qi,et al.  Novel Li[(CF3SO2)(n-C4F9SO2)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. , 2016, ACS applied materials & interfaces.

[49]  A. Zalewska,et al.  Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivity , 2016 .

[50]  M. Armand,et al.  Challenges and Issues Facing Lithium Metal for Solid State Rechargeable Batteries , 2016 .

[51]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[52]  Y. Tominaga,et al.  A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature , 2016 .

[53]  Daniel Brandell,et al.  High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature , 2015 .

[54]  Dan He,et al.  Poly(ethylene oxide)-based electrolytes for lithium-ion batteries , 2015 .

[55]  M. Armand,et al.  All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes. , 2015, ChemSusChem.

[56]  M. Wagemaker,et al.  Direct Observation of Li‐Ion Transport in Electrodes under Nonequilibrium Conditions Using Neutron Depth Profiling , 2015 .

[57]  Bing Sun,et al.  Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries , 2015 .

[58]  Karim Zaghib,et al.  New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO₄ versus nano Li1.2V₃O₈. , 2015, Nano letters.

[59]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[60]  Heng Zhang,et al.  Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte , 2014 .

[61]  Kenta Yamazaki,et al.  Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. , 2014, Chemical communications.

[62]  M. Armand,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[63]  M. Armand,et al.  Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions , 2013 .

[64]  Keun-Ho Choi,et al.  Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries , 2013 .

[65]  C. Grey,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[66]  Rachid Meziane,et al.  Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries , 2011 .

[67]  M. Armand,et al.  New covalent salts of the 4+ V class for Li batteries , 2011 .

[68]  E. Quartarone,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[69]  Wenfang Feng,et al.  Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for l , 2011 .

[70]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[71]  John B. Goodenough,et al.  Neutron Depth Profiling Applications to Lithium-Ion Cell Research , 2009 .

[72]  M. Armand,et al.  Building better batteries , 2008, Nature.

[73]  Bruno Scrosati,et al.  Novel Solid Polymer Electrolytes with Single Lithium-Ion Transport , 2004 .

[74]  M. Armand,et al.  NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2n+1)(SO2CmF2m+1)]. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[75]  Christopher S. Johnson,et al.  7Li NMR study of intercalated lithium in curved carbon lattices , 2000 .

[76]  M. Ratner,et al.  Polymer Electrolytes: Ionic Transport Mechanisms and Relaxation Coupling , 2000 .

[77]  M. Armand Polymers with Ionic Conductivity , 1990 .

[78]  Alain Guyot,et al.  Polymer electrolytes , 1985, Polymer Bulletin.

[79]  Heng Zhang,et al.  Jeffamine‐Based Polymers for Rechargeable Batteries , 2019, Batteries & Supercaps.

[80]  Future Lithium-ion Batteries , 2019 .

[81]  A. Minor,et al.  Electrochemical Deposition and Stripping Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane , 2015 .

[82]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.