Copper-chelating azides for efficient click conjugation reactions in complex media.

The concept of chelation-assisted copper catalysis was employed for the development of new azides that display unprecedented reactivity in the copper(I)-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) reaction. Azides that bear strong copper-chelating moieties were synthesized; these functional groups allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. Efficient ligation occurred at low concentration and in complex media with only one equivalent of copper, which improves the biocompatibility of the CuAAC reaction. Furthermore, such a click reaction allowed the localization of a bioactive compound inside living cells by fluorescence measurements.

[1]  Lei Zhu,et al.  Chemoselective sequential "click" ligation using unsymmetrical bisazides. , 2012, Organic letters.

[2]  Lei Zhu,et al.  Apparent copper(II)-accelerated azide-alkyne cycloaddition. , 2009, Organic letters.

[3]  Lei Zhu,et al.  Tridentate complexes of 2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine and its organic azide precursors: an application of the copper(II) acetate-accelerated azide-alkyne cycloaddition. , 2011, Dalton transactions.

[4]  Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. , 2011, Angewandte Chemie.

[5]  K. Sharpless,et al.  Polytriazoles as copper(I)-stabilizing ligands in catalysis. , 2004, Organic letters.

[6]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[7]  Wei Wang,et al.  Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition. , 2011, Chemistry, an Asian journal.

[8]  M. Finn,et al.  Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. , 2007, Journal of the American Chemical Society.

[9]  Z. Mester,et al.  Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. , 2011, Journal of the American Chemical Society.

[10]  M. Finn,et al.  Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. , 2010, Journal of the American Chemical Society.

[11]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[12]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[13]  C. van Nostrum,et al.  Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. , 2009, Bioconjugate chemistry.

[14]  Daniel J. Burke,et al.  Applications of orthogonal "click" chemistries in the synthesis of functional soft materials. , 2009, Chemical reviews.

[15]  Lei Zhu,et al.  Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. , 2011, Journal of the American Chemical Society.

[16]  C. Fahrni,et al.  A Fluorogenic Probe for the Copper(I)-Catalyzed Azide−Alkyne Ligation Reaction: Modulation of the Fluorescence Emission via 3(n,π*)−1(π,π*) Inversion , 2004 .

[17]  M. Wolfert,et al.  Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. , 2008, Angewandte Chemie.

[18]  M. Finn,et al.  Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. , 2004, Journal of the American Chemical Society.

[19]  Scott T. Clarke,et al.  Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. , 2012, Angewandte Chemie.

[20]  M. Finn,et al.  Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. , 2009, Angewandte Chemie.

[21]  A. Ting,et al.  Site-specific protein labeling using PRIME and chelation-assisted click chemistry , 2013, Nature Protocols.

[22]  R. Riguera,et al.  Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. , 2011, Angewandte Chemie.

[23]  Lei Zhu,et al.  Chelation-assisted, copper(II)-acetate-accelerated azide-alkyne cycloaddition. , 2010, The Journal of organic chemistry.

[24]  C. Bertozzi,et al.  Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones , 2010, Journal of the American Chemical Society.

[25]  E. Lallana,et al.  Zuverlässige und effiziente Konjugation von Biomolekülen über Huisgen‐Azid‐Alkin‐Cycloadditionen , 2011 .

[26]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[27]  Amy C Yan,et al.  Biocompatible copper(I) catalysts for in vivo imaging of glycans. , 2010, Journal of the American Chemical Society.

[28]  Dariusz Matosiuk,et al.  Click chemistry for drug development and diverse chemical-biology applications. , 2013, Chemical reviews.