Density functional studies of single molecule magnets

Abstract A method for the calculation of the second-order anisotropy parameters of single molecular magnets from the single particle orbitals is reviewed. We combine this method with density functional calculations to predict the magnetic anisotropy parameters of several single molecule magnets: Mn 12 -acetate, Mn 10 , Co 4 , Fe 4 , Cr 1 and V 15 . Comparison with available experimental data shows that it is possible to predict these values quite accurately from density functional wavefunctions.

[1]  Friedman,et al.  Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. , 1996, Physical review letters.

[2]  F. Schneider Einführung in die Quantentheorie , 1967 .

[3]  Jens Kortus,et al.  Electronic-structure-based investigation of magnetism in the Fe8 molecular magnet , 2002 .

[4]  Tunna Baruah,et al.  Magnetic ordering, electronic structure, and magnetic anisotropy energy in the high-spin Mn 10 single molecule magnet , 2002 .

[5]  H. Shtrikman,et al.  Distribution of tunnel splittings in Mn(12) acetate. , 2001, Physical review letters.

[6]  L. Thomas,et al.  Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets , 1996, Nature.

[7]  Tunna Baruah,et al.  Electronic structure and magnetic anisotropy of the [Co 4(hmp) 4(CH 3OH) 4Cl 4] molecule , 2002 .

[8]  A. Caneschi,et al.  Slow Magnetic Relaxation of [Et3NH]2Mn(CH3CN)4(H2O)2] [Mn10O4(biphen)4Br12] (biphen=2,2′-biphenoxide) at Very Low Temperature , 1999 .

[9]  Mark R. Pederson,et al.  Magnetic anisotropy barrier for spin tunneling in Mn 12 O 12 molecules , 1999 .

[10]  S. Khanna,et al.  Electronic and geometrical structure and magnetic ordering in passivated Mn12O12-acetate nanomagnets , 1999 .

[11]  Hamiltonian of the V15 spin system from first-principles density-functional calculations. , 2001, Physical review letters.

[12]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[13]  Mark R. Pederson,et al.  Optimization of Gaussian basis sets for density-functional calculations , 1999 .

[14]  M. Pederson,et al.  Infrared intensities and Raman-scattering activities within density-functional theory. , 1996, Physical review. B, Condensed matter.

[15]  D. C. Bradley,et al.  Three-co-ordinated transition-metal compounds. Part III. Electron spin resonance studies on tris(bistrimethylsilylamido)derivatives of titanium, chromium, and iron , 1973 .

[16]  Jackson,et al.  Variational mesh for quantum-mechanical simulations. , 1990, Physical review. B, Condensed matter.

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  Jens Kortus,et al.  Strategies for massively parallel local-orbital-based electronic structure methods , 2000 .

[19]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[20]  C. Hellberg,et al.  DFT studies of the molecular nanomagnet Fe8 and the V15 spin system , 2001 .

[21]  R. Feynman Forces in Molecules , 1939 .

[22]  Tunna Baruah,et al.  Electronic structure of the molecule-based magnet Mn[N(CN)2]2 from theory and experiment , 2002 .

[23]  W. Wernsdorfer,et al.  Quantum phase interference and parity effects in magnetic molecular clusters , 1999, Science.

[24]  Joel S. Miller,et al.  Unsolved mysteries in molecule-based magnets — a personal view , 2001 .

[25]  Jackson,et al.  Accurate forces in a local-orbital approach to the local-density approximation. , 1990, Physical review. B, Condensed matter.

[26]  J. H. Van Vleck,et al.  On the Anisotropy of Cubic Ferromagnetic Crystals , 1937 .

[27]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[28]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[29]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.