Variable Accuracy of Matrix-Vector Products in Projection Methods for Eigencomputation

We analyze the behavior of projection-type schemes, such as the Arnoldi and Lanczos methods, for the approximation of a few eigenvalues and eigenvectors of a matrix A, when A cannot be applied exactly but only with a possibly large perturbation. This occurs, for instance, in shift-and-invert procedures or when dealing with large generalized eigenvalue problems. We theoretically show that the accuracy with which A is applied at each iteration can be relaxed, as convergence to specific eigenpairs takes place. We show that the size of the perturbation is allowed to be inversely proportional to the current residual norm, in a way that also depends on the sensitivity of the matrix A. This result provides a complete understanding of reported experimental evidence in the recent literature. Moreover, we adapt our theoretical results to devise a practical relaxation criterion to achieve convergence of the inexact procedure. Numerical experiments validate our analysis.

[1]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[2]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[3]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[4]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[5]  Min Zeng,et al.  Harmonic projection methods for large non-symmetric eigenvalue problems , 1998, Numer. Linear Algebra Appl..

[6]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[7]  G. Golub,et al.  Inexact Inverse Iteration for Generalized Eigenvalue Problems , 2000 .

[8]  Gerard L. G. Sleijpen,et al.  On the use of harmonic Ritz pairs in approximating internal eigenpairs , 2003 .

[9]  P. Smit,et al.  THE EFFECTS OF INEXACT SOLVERS IN ALGORITHMS FOR SYMMETRIC EIGENVALUE PROBLEMS , 1999 .

[10]  Valeria Simoncini,et al.  On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..

[11]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[12]  R. Morgan Computing Interior Eigenvalues of Large Matrices , 1991 .

[13]  G. W. Stewart,et al.  On the powers of a matrix with perturbations , 2003, Numerische Mathematik.

[14]  Gerard L. G. Sleijpen,et al.  Restarted GMRES with Inexact Matrix-Vector Products , 2004, NAA.

[15]  Gerard L. G. Sleijpen,et al.  Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[16]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[17]  Yvan Notay,et al.  Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem , 2002, Numer. Linear Algebra Appl..

[18]  Amina Bouras,et al.  A relaxation strategy for the Arnoldi method in eigenproblems , 2000 .

[19]  Valeria Simoncini,et al.  A matrix analysis of Arnoldi and Lanczos methods , 1998, Numerische Mathematik.

[20]  L. Eldén,et al.  Inexact Rayleigh Quotient-Type Methods for Eigenvalue Computations , 2002 .

[21]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[22]  Willis Lin,et al.  An inexact inverse iteration for large sparse eigenvalue problems , 1997 .

[23]  Iterative linear system solvers with approximate matrix-vector products , 2005 .

[24]  R. Morgan,et al.  Harmonic projection methods for large non-symmetric eigenvalue problems , 1998 .

[25]  W. Kahan,et al.  Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .

[26]  John Rossi,et al.  Convergence of Restarted Krylov Subspaces to Invariant Subspaces , 2004, SIAM J. Matrix Anal. Appl..

[27]  V. Frayssé,et al.  A relaxation strategy for inexact matrix-vector products for Krylov methods , 2000 .