Local Privacy, Data Processing Inequalities, and Statistical Minimax Rates

Working under a model of privacy in which data remains private even from the statistician, we study the tradeoff between privacy guarantees and the utility of the resulting statistical estimators. We prove bounds on information-theoretic quantities, including mutual information and Kullback-Leibler divergence, that depend on the privacy guarantees. When combined with standard minimax techniques, including the Le Cam, Fano, and Assouad methods, these inequalities allow for a precise characterization of statistical rates under local privacy constraints. We provide a treatment of several canonical families of problems: mean estimation, parameter estimation in fixed-design regression, multinomial probability estimation, and nonparametric density estimation. For all of these families, we provide lower and upper bounds that match up to constant factors, and exhibit new (optimal) privacy-preserving mechanisms and computationally efficient estimators that achieve the bounds.

[1]  A. Wald Contributions to the Theory of Statistical Estimation and Testing Hypotheses , 1939 .

[2]  S L Warner,et al.  Randomized response: a survey technique for eliminating evasive answer bias. , 1965, Journal of the American Statistical Association.

[3]  R. Phelps Lectures on Choquet's Theorem , 1966 .

[4]  D. W. Scott On optimal and data based histograms , 1979 .

[5]  L. Gleser Estimation in a Multivariate "Errors in Variables" Regression Model: Large Sample Results , 1981 .

[6]  P. Assouad Deux remarques sur l'estimation , 1983 .

[7]  Lucien Birgé Approximation dans les espaces métriques et théorie de l'estimation , 1983 .

[8]  P. Brucker Review of recent development: An O( n) algorithm for quadratic knapsack problems , 1984 .

[9]  George T. Duncan,et al.  Disclosure-Limited Data Dissemination , 1986 .

[10]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[11]  D. Lambert,et al.  The Risk of Disclosure for Microdata , 1989 .

[12]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[13]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[14]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[15]  Michael Kearns,et al.  Efficient noise-tolerant learning from statistical queries , 1993, STOC.

[16]  Bin Yu Assouad, Fano, and Le Cam , 1997 .

[17]  Stephen E. Fienberg,et al.  Disclosure limitation using perturbation and related methods for categorical data , 1998 .

[18]  Yuhong Yang,et al.  Information-theoretic determination of minimax rates of convergence , 1999 .

[19]  V. Buldygin,et al.  Metric characterization of random variables and random processes , 2000 .

[20]  Lianfen Qian,et al.  Nonparametric Curve Estimation: Methods, Theory, and Applications , 1999, Technometrics.

[21]  Thomas Kühn,et al.  A Lower Estimate for Entropy Numbers , 2001, J. Approx. Theory.

[22]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[23]  Alexandre V. Evfimievski,et al.  Limiting privacy breaches in privacy preserving data mining , 2003, PODS.

[24]  Marc Teboulle,et al.  Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..

[25]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[26]  Moni Naor,et al.  Our Data, Ourselves: Privacy Via Distributed Noise Generation , 2006, EUROCRYPT.

[27]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[28]  Cynthia Dwork,et al.  Privacy, accuracy, and consistency too: a holistic solution to contingency table release , 2007, PODS.

[29]  L. Wasserman,et al.  A Statistical Framework for Differential Privacy , 2008, 0811.2501.

[30]  Adam D. Smith,et al.  Composition attacks and auxiliary information in data privacy , 2008, KDD.

[31]  A. Blum,et al.  A learning theory approach to non-interactive database privacy , 2008, STOC.

[32]  Andrew W. Roddam,et al.  Measurement Error in Nonlinear Models: a Modern Perspective , 2008 .

[33]  Sofya Raskhodnikova,et al.  What Can We Learn Privately? , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[34]  Eran Omri,et al.  Distributed Private Data Analysis: On Simultaneously Solving How and What , 2008, CRYPTO.

[35]  Martin J. Wainwright,et al.  Information-theoretic lower bounds on the oracle complexity of convex optimization , 2009, NIPS.

[36]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[37]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[38]  Runze Li,et al.  Variable Selection for Partially Linear Models With Measurement Errors , 2009, Journal of the American Statistical Association.

[39]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[40]  Cynthia Dwork,et al.  Differential privacy and robust statistics , 2009, STOC '09.

[41]  Kunal Talwar,et al.  On the geometry of differential privacy , 2009, STOC '10.

[42]  Toniann Pitassi,et al.  The Limits of Two-Party Differential Privacy , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[43]  Guy N. Rothblum,et al.  A Multiplicative Weights Mechanism for Privacy-Preserving Data Analysis , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[44]  Stephen E. Fienberg,et al.  Differential Privacy and the Risk-Utility Tradeoff for Multi-dimensional Contingency Tables , 2010, Privacy in Statistical Databases.

[45]  Runze Li,et al.  Variable Selection in Measurement Error Models. , 2010, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[46]  Guy N. Rothblum,et al.  Boosting and Differential Privacy , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[47]  Amos Beimel,et al.  Bounds on the Sample Complexity for Private Learning and Private Data Release , 2010, TCC.

[48]  Po-Ling Loh,et al.  High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity , 2011, NIPS.

[49]  Adam D. Smith,et al.  Privacy-preserving statistical estimation with optimal convergence rates , 2011, STOC '11.

[50]  Anand D. Sarwate,et al.  Differentially Private Empirical Risk Minimization , 2009, J. Mach. Learn. Res..

[51]  Ling Huang,et al.  Learning in a Large Function Space: Privacy-Preserving Mechanisms for SVM Learning , 2009, J. Priv. Confidentiality.

[52]  Anindya De,et al.  Lower Bounds in Differential Privacy , 2011, TCC.

[53]  Martin J. Wainwright,et al.  Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods , 2012, NIPS.

[54]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[55]  Kamalika Chaudhuri,et al.  Convergence Rates for Differentially Private Statistical Estimation , 2012, ICML.

[56]  Martin J. Wainwright,et al.  Optimal rates for zero-order optimization: the power of two function evaluations , 2013, arXiv.org.

[57]  Emmanuel J. Candès,et al.  On the Fundamental Limits of Adaptive Sensing , 2011, IEEE Transactions on Information Theory.

[58]  Larry A. Wasserman,et al.  Random Differential Privacy , 2011, J. Priv. Confidentiality.

[59]  Venkat Anantharam,et al.  On Maximal Correlation, Hypercontractivity, and the Data Processing Inequality studied by Erkip and Cover , 2013, ArXiv.

[60]  Michael I. Jordan,et al.  Matrix concentration inequalities via the method of exchangeable pairs , 2012, 1201.6002.

[61]  Martin J. Wainwright,et al.  Privacy Aware Learning , 2012, JACM.

[62]  Martin J. Wainwright,et al.  Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations , 2013, IEEE Transactions on Information Theory.