Optimized optical trapping of gold nanoparticles.

Metallic nanoparticles are of significant interest due to their particular optical and biological applications. Gold nanoparticles are proven to be excellent candidate for in vivo micro-manipulation using Optical Tweezers. This manuscript reports on stable 3-D trapping of 9.5-254nm gold nanospheres using substantially decreased laser power. The lower limit is approximately 2 times smaller than previous record. 5.4nm gold nanospheres were trapped for only 2-3 seconds. For the first time, our experimental data verify the volume corrected Rayleigh model for particles smaller than 100nm in diameter. Measuring the maximum applicable force for gold nanoparticles, we have shown that a few tens of milli-Watts of laser power can produce pico-Newton range forces.

[1]  L. Oddershede,et al.  Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. , 2007, Optics letters.

[2]  Masakazu Sugiyama,et al.  Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. , 2005, The journal of physical chemistry. B.

[3]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[4]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[5]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[6]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[7]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[8]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.

[9]  Wei Lin Leong,et al.  Charging phenomena in pentacene-gold nanoparticle memory device , 2007 .

[10]  Mohammad A. Charsooghi,et al.  Efficient in-depth trapping with an oil-immersion objective lens. , 2006, Optics letters.

[11]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[12]  Olaf Schubert,et al.  Quantitative optical trapping of single gold nanorods. , 2008, Nano letters.

[13]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[14]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[15]  Rice,et al.  Direct measurements of constrained brownian motion of an isolated sphere between two walls , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Zhimin Liu,et al.  Sonochemical formation of single-crystalline gold nanobelts. , 2006, Angewandte Chemie.

[17]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[18]  R. Golestanian,et al.  Measuring lateral efficiency of optical traps: The effect of tube length , 2006 .

[19]  S. Nader S. Reihani,et al.  Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting , 2007, Proceedings of the National Academy of Sciences.

[20]  E. Zubarev,et al.  Paclitaxel-functionalized gold nanoparticles. , 2007, Journal of the American Chemical Society.

[21]  Kirstine Berg-Sørensen,et al.  tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers , 2006, Comput. Phys. Commun..

[22]  Romain Quidant,et al.  Tunable optical sorting and manipulation of nanoparticles via plasmon excitation. , 2006, Optics letters.

[23]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[24]  Rosalba Saija,et al.  Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres. , 2009, Optics express.

[25]  I. Yamaguchi,et al.  Optical trapping of metallic particles by a fixed Gaussian beam. , 1998, Optics letters.