Upper eigenvalue bounds for the Kirchhoff Laplacian on embedded metric graphs
暂无分享,去创建一个
[1] Asma Hassannezhad. Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem , 2011 .
[2] James R. Lee,et al. Metric Uniformization and Spectral Bounds for Graphs , 2010, ArXiv.
[3] M. Troyanov. On the moduli space of singular Euclidean surfaces , 2007, math/0702666.
[4] P. Kuchment,et al. Introduction to Quantum Graphs , 2012 .
[5] C. Cattaneo. The spectrum of the continuous Laplacian on a graph , 1997 .
[6] A. Kostenko,et al. Spectral estimates for infinite quantum graphs , 2017, Calculus of Variations and Partial Differential Equations.
[7] Leonid Friedlander,et al. Extremal properties of eigenvalues for a metric graph , 2005 .
[8] Jonathan Rohleder. Eigenvalue estimates for the Laplacian on a metric tree , 2016, 1602.03864.
[9] Delio Mugnolo,et al. On the Spectral Gap of a Quantum Graph , 2015, 1504.01962.
[10] James R. Lee,et al. Eigenvalue Bounds, Spectral Partitioning, and Metrical Deformations via Flows , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[11] Carsten Thomassen,et al. Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.
[12] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[13] H. Neidhardt,et al. Spectral Theory of Infinite Quantum Graphs , 2017, Annales Henri Poincaré.
[14] E. M. Andreev. ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE , 1970 .
[15] E. M. Andreev. ON CONVEX POLYHEDRA IN LOBAČEVSKIĬ SPACES , 1970 .
[16] Zhongzhi Zhang,et al. The normalized Laplacian spectrum of subdivisions of a graph , 2015, Appl. Math. Comput..
[17] Delio Mugnolo. Semigroup Methods for Evolution Equations on Networks , 2014 .
[18] S. Nicaise. Spectre des réseaux topologiques finis , 1987 .
[19] R. Band,et al. Quantum Graphs which Optimize the Spectral Gap , 2016, 1608.00520.
[20] Shing-Tung Yau,et al. Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds , 1980 .
[21] W. Thurston. The geometry and topology of 3-manifolds , 1979 .
[22] J. Below. A characteristic equation associated to an eigenvalue problem on c2-networks , 1985 .
[23] James E. pLebensohn. Geometry and the Imagination , 1952 .
[24] D. Lenz,et al. Topological Poincar\'e type inequalities and lower bounds on the infimum of the spectrum for graphs , 2018, 1801.09279.
[25] Nicholas J. Korevaar. Upper bounds for eigenvalues of conformal metrics , 1993 .
[26] Delio Mugnolo,et al. Lower estimates on eigenvalues of quantum graphs , 2019, 1907.13350.
[27] U. Feige,et al. Spectral Graph Theory , 2015 .
[28] Radoslaw K. Wojciechowski,et al. Cheeger inequalities for unbounded graph Laplacians , 2012, 1209.4911.
[29] D. Cohen-Steiner,et al. A transfer principle and applications to eigenvalue estimates for graphs , 2014, 1409.4228.
[30] Delio Mugnolo. What is actually a metric graph , 2019, 1912.07549.
[31] D. Borthwick,et al. Sharp diameter bound on the spectral gap for quantum graphs , 2019, Proceedings of the American Mathematical Society.
[32] G. Berkolaiko,et al. Edge connectivity and the spectral gap of combinatorial and quantum graphs , 2017, 1702.05264.
[33] C. Kuratowski. Sur le problème des courbes gauches en Topologie , 1930 .
[34] Gary L. Miller,et al. Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.
[35] Shang-Hua Teng,et al. Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[36] Jonathan A. Kelner. Spectral partitioning, eigenvalue bounds, and circle packings for graphs of bounded genus , 2004, STOC '04.