Gaussian split Ewald: A fast Ewald mesh method for molecular simulation.

Gaussian split Ewald (GSE) is a versatile Ewald mesh method that is fast and accurate when used with both real-space and k-space Poisson solvers. While real-space methods are known to be asymptotically superior to k-space methods in terms of both computational cost and parallelization efficiency, k-space methods such as smooth particle-mesh Ewald (SPME) have thus far remained dominant because they have been more efficient than existing real-space methods for simulations of typical systems in the size range of current practical interest. Real-space GSE, however, is approximately a factor of 2 faster than previously described real-space Ewald methods for the level of force accuracy typically required in biomolecular simulations, and is competitive with leading k-space methods even for systems of moderate size. Alternatively, GSE may be combined with a k-space Poisson solver, providing a conveniently tunable k-space method that performs comparably to SPME. The GSE method follows naturally from a uniform framework that we introduce to concisely describe the differences between existing Ewald mesh methods.

[1]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[2]  L. Collatz The numerical treatment of differential equations , 1961 .

[3]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[4]  D. Heyes,et al.  Electrostatic potentials and fields in infinite point charge lattices , 1981 .

[5]  B. Montgomery Pettitt,et al.  Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids , 1985 .

[6]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[7]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[8]  H. G. Petersen,et al.  Applied field simulations of Stockmayer fluids , 1989 .

[9]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[10]  Darrin M. York,et al.  The fast Fourier Poisson method for calculating Ewald sums , 1994 .

[11]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[12]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[13]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[14]  Tanja Kortemme,et al.  Design of a 20-Amino Acid, Three-Stranded β-Sheet Protein , 1998 .

[15]  M. Deserno,et al.  HOW TO MESH UP EWALD SUMS. II. AN ACCURATE ERROR ESTIMATE FOR THE PARTICLE-PARTICLE-PARTICLE-MESH ALGORITHM , 1998, cond-mat/9807100.

[16]  S. W. Leeuw,et al.  An Iterative PPPM Method for Simulating Coulombic Systems on Distributed Memory Parallel Computers , 1998 .

[17]  T. Darden,et al.  Molecular dynamics simulations of biomolecules: long-range electrostatic effects. , 1999, Annual review of biophysics and biomolecular structure.

[18]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[19]  L. Nilsson,et al.  On the truncation of long-range electrostatic interactions in DNA. , 2000, Biophysical journal.

[20]  Christian Holm,et al.  How to Mesh up Ewald Sums , 2000 .

[21]  Edward D Harder,et al.  Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems , 2001 .

[22]  C. Sagui,et al.  Multigrid methods for classical molecular dynamics simulations of biomolecules , 2001 .

[23]  D. Case,et al.  Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations , 2001 .

[24]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[25]  A. C. Maggs,et al.  Local simulation algorithms for Coulomb interactions. , 2002 .

[26]  Robert D. Skeel,et al.  Multiple grid methods for classical molecular dynamics , 2002, J. Comput. Chem..

[27]  Lennart Nilsson,et al.  Structure and dynamics of liquid water with different long‐range interaction truncation and temperature control methods in molecular dynamics simulations , 2002, J. Comput. Chem..

[28]  M. Patra,et al.  Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. , 2003, Biophysical journal.

[29]  Celeste Sagui,et al.  Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. , 2004, The Journal of chemical physics.