2-factors in Dense Graphs

Abstract A conjecture of Sauer and Spencer states that any graph G on n vertices with minimum degree at least 2/3n contains any graph H on n vertices with maximum degree 2 or less. This conjecture is proven here for all sufficiently large n.

[1]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[2]  Vasek Chvátal,et al.  The tail of the hypergeometric distribution , 1979, Discret. Math..

[3]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[4]  J. Bondy,et al.  Pancyclic graphs II , 1971 .

[5]  Joel H. Spencer,et al.  Edge disjoint placement of graphs , 1978, J. Comb. Theory B.

[6]  Mohamed H. El-Zahar,et al.  On circuits in graphs , 1984, Discret. Math..

[7]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[8]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[9]  Noga Alon The String Chromatic Number of a Graph , 1992, Random Struct. Algorithms.

[10]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[11]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[12]  Andras Hajnal,et al.  On the maximal number of independent circuits in a graph , 1963 .

[13]  Prabhakar Raghavan,et al.  Probabilistic construction of deterministic algorithms: Approximating packing integer programs , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).