Equations and Monoid Varieties of Dot-Depth One and Two

Abstract Each level of the Straubing's hierarchy of aperiodic monoids can be parametrized in a natural way. This paper studies this parametrization for dot-depth one and two monoids. For level one, it is shown that the m th level is defined by a finite sequence of equations if and only if m = 1, 2 or 3. For level two, and for m ⩾ 1, a sequence of equations is given which is satisfied in the m th level and shown to ultimately define the 1st level.

[1]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[2]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[3]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[4]  Francine Blanchet-Sadri,et al.  Games, equations and the dot-depth hierarchy , 1989 .

[5]  F. Blanchet-Sadri,et al.  Equations and dot-depth one , 1993 .

[6]  Wolfgang Thomas,et al.  A Concatenation Game and the Dot-Depth Hierarchy , 1987, Computation Theory and Logic.

[7]  G. Lallement Semigroups and combinatorial applications , 1979 .

[8]  Robert Knast,et al.  A Semigroup Characterization of Dot-Depth one Languages , 1983, RAIRO Theor. Informatics Appl..

[9]  Francine Blanchet-Sadri,et al.  Games, Equations and Dot-Depth Two Monoids , 1992, Discret. Appl. Math..

[10]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..

[11]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[12]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[13]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[14]  Robert Knast Some Theorems on Graph Congruences , 1983, RAIRO Theor. Informatics Appl..

[15]  Howard Straubing Semigroups and Languages of Dot-Depth 2 , 1986, ICALP.

[16]  Francine Blanchet-Sadri,et al.  On dot-depth two , 1990, RAIRO Theor. Informatics Appl..

[17]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[18]  Wolfgang Thomas An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .

[19]  Pascal Weil,et al.  Inverse Monoids of Dot-Depth Two , 1989, Theor. Comput. Sci..

[20]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[21]  Francine Blanchet-Sadri,et al.  Some Logical Characterizations of the Dot-Depth Hierarchy and Applications , 1995, J. Comput. Syst. Sci..