An Intrinsically Nonflammable Electrolyte for Prominent‐Safety Lithium Metal Batteries with High Energy Density and Cycling Stability

[1]  Jun Lu,et al.  Non‐Flammable Ester Electrolyte with Boosted Stability Against Li for High‐Performance Li Metal Batteries , 2022, Angewandte Chemie.

[2]  Nam-Yung Park,et al.  Degradation Mechanism of Ni-Rich Cathode Materials: Focusing on Particle Interior , 2022, ACS Energy Letters.

[3]  Zhichen Wang,et al.  Advanced Ultralow‐Concentration Electrolyte for Wide‐Temperature and High‐Voltage Li‐Metal Batteries , 2022, Advanced Functional Materials.

[4]  A. Manthiram,et al.  A Facile Potential Hold Method for Fostering Inorganic Solid‐electrolyte Interphase for Anode‐free Lithium‐metal Batteries , 2022, Angewandte Chemie.

[5]  J. Bistline Roadmaps to net-zero emissions systems: Emerging insights and modeling challenges , 2021, Joule.

[6]  Wengao Zhao,et al.  In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes , 2021, Nature Communications.

[7]  Lei Zhang,et al.  Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte , 2021 .

[8]  M. Kuenzel,et al.  Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries , 2021, Joule.

[9]  Ji‐Guang Zhang,et al.  Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries , 2021, Nature Energy.

[10]  M. Engelhard,et al.  Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries. , 2021, Angewandte Chemie.

[11]  Xiaodong Wu,et al.  Intrinsically Nonflammable Ionic Liquid‐Based Localized Highly Concentrated Electrolytes Enable High‐Performance Li‐Metal Batteries , 2021, Advanced Energy Materials.

[12]  Xiaodong Wu,et al.  Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries , 2020 .

[13]  Nugraha,et al.  Self-Assembly of Two-Dimensional Bimetallic Nickel–Cobalt Phosphate Nanoplates into One-Dimensional Porous Chainlike Architecture for Efficient Oxygen Evolution Reaction , 2020 .

[14]  C. Yoon,et al.  Cobalt‐Free High‐Capacity Ni‐Rich Layered Li[Ni0.9Mn0.1]O2 Cathode , 2019, Advanced Energy Materials.

[15]  Ji‐Guang Zhang,et al.  Nonflammable Electrolytes for Lithium Ion Batteries Enabled by Ultraconformal Passivation Interphases , 2019, ACS Energy Letters.

[16]  Lifang Jiao,et al.  Fire-Retardant Phosphate-Based Electrolytes for High-Performance Lithium Metal Batteries , 2019, ACS Applied Energy Materials.

[17]  Yuyan Shao,et al.  Stable Li Metal Anode with “Ion–Solvent-Coordinated” Nonflammable Electrolyte for Safe Li Metal Batteries , 2019, ACS Energy Letters.

[18]  Jiulin Wang,et al.  An Intrinsic Flame-Retardant Organic Electrolyte for Safe Lithium-Sulfur Batteries. , 2018, Angewandte Chemie.

[19]  Hongkyung Lee,et al.  High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes , 2018, Joule.

[20]  Jun Liu,et al.  Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries , 2018, Nature Energy.

[21]  Yujun Wang,et al.  Molecular dynamics simulation of the aggregation phenomenon in the late stages of silica materials preparation , 2018, Chemical Engineering Science.

[22]  J. Choi,et al.  The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes , 2018 .

[23]  Yuki Yamada,et al.  Fire-extinguishing organic electrolytes for safe batteries , 2018 .

[24]  Tianyou Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[25]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[26]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[27]  Stefano Passerini,et al.  Ionic Liquid Electrolytes for Safer Lithium Batteries: I. Investigation Around Optimal Formulation , 2016 .

[28]  D. Macfarlane,et al.  Electrochemical studies of N-Methyl N-Propyl Pyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid mixtures with conventional electrolytes in LiFePO4/Li cells , 2015 .

[29]  D. Macfarlane,et al.  Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes , 2006 .

[30]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .