Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images

We present MubyNet -- a feed-forward, multitask, bottom up system for the integrated localization, as well as 3d pose and shape estimation, of multiple people in monocular images. The challenge is the formal modeling of the problem that intrinsically requires discrete and continuous computation, e.g. grouping people vs. predicting 3d pose. The model identifies human body structures (joints and limbs) in images, groups them based on 2d and 3d information fused using learned scoring functions, and optimally aggregates such responses into partial or complete 3d human skeleton hypotheses under kinematic tree constraints, but without knowing in advance the number of people in the scene and their visibility relations. We design a multi-task deep neural network with differentiable stages where the person grouping problem is formulated as an integer program based on learned body part scores parameterized by both 2d and 3d information. This avoids suboptimality resulting from separate 2d and 3d reasoning, with grouping performed based on the combined representation. The final stage of 3d pose and shape prediction is based on a learned attention process where information from different human body parts is optimally integrated. State-of-the-art results are obtained in large scale datasets like Human3.6M and Panoptic, and qualitatively by reconstructing the 3d shape and pose of multiple people, under occlusion, in difficult monocular images.

[1]  Ernesto Brau,et al.  3D Human Pose Estimation via Deep Learning from 2D Annotations , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[2]  Jonathan Tompson,et al.  Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation , 2014, NIPS.

[3]  Hans-Peter Seidel,et al.  VNect , 2017, ACM Trans. Graph..

[4]  Pascal Fua,et al.  Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose Estimation , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[5]  Francesc Moreno-Noguer,et al.  3D Human Pose Estimation from a Single Image via Distance Matrix Regression , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  James J. Little,et al.  A Simple Yet Effective Baseline for 3d Human Pose Estimation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[7]  Takeo Kanade,et al.  Panoptic Studio: A Massively Multiview System for Social Motion Capture , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[8]  Christian Szegedy,et al.  DeepPose: Human Pose Estimation via Deep Neural Networks , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Cristian Sminchisescu,et al.  Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Peter V. Gehler,et al.  Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image , 2016, ECCV.

[11]  Juergen Gall,et al.  Multi-person Pose Estimation with Local Joint-to-Person Associations , 2016, ECCV Workshops.

[12]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[13]  Cristian Sminchisescu,et al.  Monocular 3D Pose and Shape Estimation of Multiple People in Natural Scenes: The Importance of Multiple Scene Constraints , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  Cristian Sminchisescu,et al.  Deep Multitask Architecture for Integrated 2D and 3D Human Sensing , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Xiaowei Zhou,et al.  Sparseness Meets Deepness: 3D Human Pose Estimation from Monocular Video , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Yichen Wei,et al.  Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised Approach , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[17]  Xiaowei Zhou,et al.  Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Varun Ramakrishna,et al.  Convolutional Pose Machines , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Vincent Lepetit,et al.  Learning Latent Representations of 3D Human Pose with Deep Neural Networks , 2018, International Journal of Computer Vision.

[21]  Cristian Sminchisescu,et al.  Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Jitendra Malik,et al.  Using k-Poselets for Detecting People and Localizing Their Keypoints , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Cordelia Schmid,et al.  LCR-Net: Localization-Classification-Regression for Human Pose , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Deva Ramanan,et al.  3D Human Pose Estimation = 2D Pose Estimation + Matching , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Cordelia Schmid,et al.  MoCap-guided Data Augmentation for 3D Pose Estimation in the Wild , 2016, NIPS.

[26]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[27]  Antoni B. Chan,et al.  3D Human Pose Estimation from Monocular Images with Deep Convolutional Neural Network , 2014, ACCV.

[28]  Jitendra Malik,et al.  End-to-End Recovery of Human Shape and Pose , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[29]  Michael J. Black,et al.  SMPL: A Skinned Multi-Person Linear Model , 2023 .

[30]  Bernt Schiele,et al.  DeeperCut: A Deeper, Stronger, and Faster Multi-person Pose Estimation Model , 2016, ECCV.

[31]  Zhenhua Wang,et al.  Synthesizing Training Images for Boosting Human 3D Pose Estimation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[32]  Yaser Sheikh,et al.  OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Jonathan Tompson,et al.  Towards Accurate Multi-person Pose Estimation in the Wild , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).