Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations

We consider space-time continuous Galerkin methods with mesh modification in time for semilinear second order hyperbolic equations. We show a priori estimates in the energy norm without mesh conditions. Under reasonable assumptions on the choice of the spatial mesh in each time step we show optimal order convergence rates. Estimates of the jump in the Riesz projection in two successive time steps are also derived.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Donald A. French,et al.  A space-time finite element method for the wave equation* , 1993 .

[3]  A. H. Schatz,et al.  Interior maximum-norm estimates for finite element methods, part II , 1995 .

[4]  James H. Bramble,et al.  Semidiscrete and single step fully discrete approximations for second order hyperbolic equations , 1979 .

[5]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[6]  Claes Johnson,et al.  Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .

[7]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[8]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[9]  Kenneth Eriksson,et al.  AN ADAPTIVE FINITE ELEMENT METHOD WITH EFFICIENT MAXIMUM NORM ERROR CONTROL FOR ELLIPTIC PROBLEMS , 1994 .

[10]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[11]  Daoqi Yang,et al.  Grid modification for second-order hyperbolic problems , 1995 .

[12]  Peter Monk,et al.  Continuous finite elements in space and time for the heat equation , 1989 .

[13]  I. Babuška,et al.  Analysis of finite element methods for second order boundary value problems using mesh dependent norms , 1980 .

[14]  Donald A. French,et al.  A continuous space-time finite element method for the wave equation , 1996, Math. Comput..

[15]  Irena Lasiecka,et al.  Continuous finite elements in space and time for the nonhomogeneous wave equation , 1994 .

[16]  T. Dupont Mesh modification for evolution equations , 1982 .

[17]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[18]  C. Makridakis Finite element approximations of nonlinear elastic waves , 1993 .

[19]  Charalambos Makridakis,et al.  A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .

[20]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .