Long-lived magnetism from solidification-driven convection on the pallasite parent body

[1]  R. Harrison,et al.  Nanopaleomagnetism of meteoritic Fe–Ni studied using X-ray photoemission electron microscopy , 2014 .

[2]  G. Morard,et al.  A long-lived lunar dynamo powered by core crystallization , 2014 .

[3]  R. Harrison,et al.  Nanomagnetic intergrowths in Fe-Ni meteoritic metal: The potential for time-resolved records of planetesimal dynamo fields , 2014 .

[4]  G. Laan Applications of soft x-ray magnetic dichroism , 2013 .

[5]  Eric Blackman,et al.  Evidence for a Dynamo in the Main Group Pallasite Parent Body , 2012, Science.

[6]  Aaron T. Kuan,et al.  An Ancient Core Dynamo in Asteroid Vesta , 2012, Science.

[7]  H. Leroux,et al.  Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites , 2011 .

[8]  P. Warren Ejecta–megaregolith accumulation on planetesimals and large asteroids , 2011 .

[9]  B. Weiss,et al.  Magnetic evidence for a partially differentiated carbonaceous chondrite parent body , 2010, Proceedings of the National Academy of Sciences.

[10]  E. Scott,et al.  Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin , 2010 .

[11]  B. Weiss,et al.  Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation , 2010 .

[12]  D. Stevenson Planetary Magnetic Fields: Achievements and Prospects , 2010 .

[13]  E. Scott,et al.  Iron meteorites: Crystallization, thermal history, parent bodies, and origin , 2009 .

[14]  Q. Williams Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores , 2009 .

[15]  F. Nimmo Energetics of asteroid dynamos and the role of compositional convection , 2009 .

[16]  Linda T. Elkins-Tanton,et al.  Chondrites as samples of differentiated planetesimals , 2009 .

[17]  E. A. Lima,et al.  Paleointensity of the ancient Martian magnetic field , 2008 .

[18]  E. A. Lima,et al.  Magnetism on the Angrite Parent Body and the Early Differentiation of Planetesimals , 2008, Science.

[19]  S. Sahijpal,et al.  Numerical simulations of the differentiation of accreting planetesimals with 26Al and 60Fe as the heat sources , 2007 .

[20]  B. Weiss,et al.  Early Lunar Magnetism , 2007, Science.

[21]  I. Sanders,et al.  A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies , 2006 .

[22]  U. Christensen,et al.  Dipole moment scaling for convection-driven planetary dynamos , 2005 .

[23]  J. Goldstein,et al.  The formation of the Widmanstätten structure in meteorites , 2005 .

[24]  J. Lüning,et al.  Spectroscopic identification and direct imaging of interfacial magnetic spins. , 2001, Physical review letters.

[25]  J. Stöhr Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy , 1999 .

[26]  H. Padmore,et al.  Principles of X-ray magnetic dichroism spectromicroscopy , 1998 .

[27]  H. Haack,et al.  Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids , 1990 .

[28]  J. Albertsen Tetragonal Lattice of Tetrataenite (Ordered Fe-Ni, 50-50) from 4 Meteorites , 1981 .

[29]  D. Loper,et al.  Compositional convection and stratification of Earth's core , 1981, Nature.

[30]  E. Scott,et al.  Tetrataenite - ordered FeNi, a new mineral in meteorites Locality: Cape Town iron meteorite , 1980 .

[31]  E. Scott The nature of dark-etching rims in meteoritic taenite , 1973 .

[32]  R. Sherwood,et al.  Magnetic Properties of Nickel‐Iron Alloys Bombarded by Neutrons in a Magnetic Field , 1966 .

[33]  E. Anders Origin, age, and composition of meteorites , 1964 .

[34]  L. Néel,et al.  Magnetic Properties of an Iron—Nickel Single Crystal Ordered by Neutron Bombardment , 1964 .

[35]  J. Crowley,et al.  Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos , 2013 .

[36]  G. Schubert,et al.  Treatise on geophysics , 2007 .