Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality

where de denotes normalized surface measure, V is the conformal gradient and q = (2n)/(n 2). A modern folklore theorem is that by taking the infinitedimensional limit of this inequality, one obtains the Gross logarithmic Sobolev inequality for Gaussian measure, which determines Nelson's hypercontractive estimates for the Hermite semigroup (see [8]). One observes using conformal invariance that the above inequality is equivalent to the sharp Sobolev inequality on Rn for which boundedness and extremal functions can be easily calculated using dilation invariance and geometric symmetrization. The roots here go back to Hardy and Littlewood. The advantage of casting the problem on the sphere is that the role of the constants is evident, and one is led immediately to the conjecture that this inequality should hold whenever possible (for example, 2 < q < 0o if n = 2). This is in fact true and will be demonstrated in Section 2. A clear question at this point is "What is the situation in dimension 2?" Two important arguments ([25], [26], [27]) dealt with this issue, both motivated by geometric variational problems. Because q goes to infinity for dimension 2, the appropriate function space is the exponential class. Responding in part

[1]  C. Itzykson,et al.  GROUP THEORY AND THE HYDROGEN ATOM. II. , 1966 .

[2]  Peter Sarnak,et al.  Extremals of determinants of Laplacians , 1988 .

[3]  T. Branson Group representations arising from Lorentz conformal geometry , 1987 .

[4]  E. Carlen,et al.  Extremals of functionals with competing symmetries , 1990 .

[5]  W. Beckner Inequalities in Fourier analysis , 1975 .

[6]  J. Moser On a Nonlinear Problem in Differential Geometry , 1973 .

[7]  S. Chang,et al.  Estimates and extremals for zeta function determinants on four-manifolds , 1992 .

[8]  S. Sobolev On a theorem in functional analysis , 1938 .

[9]  R. Schoen Conformal deformation of a Riemannian metric to constant scalar curvature , 1984 .

[10]  W. Beckner Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Lieb Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation , 1977 .

[12]  D. Adams A sharp inequality of J. Moser for higher order derivatives , 1988 .

[13]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[14]  B. A. Taylor,et al.  Spherical rearrangements, subharmonic functions, and $\ast$-functions in $n$-space , 1976 .

[15]  T. Aubin Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire , 1979 .

[16]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[17]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[18]  John M. Lee,et al.  Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem , 1988 .

[19]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[20]  H. Widom On an inequality of Osgood, Phillips and Sarnak , 1988 .

[21]  A. Perelomov,et al.  Complex Geometry and String Theory , 1993 .

[22]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[23]  J. M. Thomas,et al.  Conformal Invariants. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Émery,et al.  Hypercontractivité de semi-groupes de diffusion , 1984 .

[25]  M. Virasoro,et al.  On a formulation of Polyakov's string theory with regular classical solutions , 1982 .

[26]  Explicit functional determinants in four dimensions , 1991 .

[27]  José F. Escobar Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate , 1990 .

[28]  E. D'hoker,et al.  On determinants of Laplacians on Riemann surfaces , 1986 .

[29]  E. Onofri On the positivity of the effective action in a theory of random surfaces , 1982 .

[30]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .