Gene4Denovo: an integrated database and analytic platform for de novo mutations in humans

Abstract De novo mutations (DNMs) significantly contribute to sporadic diseases, particularly in neuropsychiatric disorders. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) provide effective methods for detecting DNMs and prioritizing candidate genes. However, it remains a challenge for scientists, clinicians, and biologists to conveniently access and analyse data regarding DNMs and candidate genes from scattered publications. To fill the unmet need, we integrated 580 799 DNMs, including 30 060 coding DNMs detected by WES/WGS from 23 951 individuals across 24 phenotypes and prioritized a list of candidate genes with different degrees of statistical evidence, including 346 genes with false discovery rates <0.05. We then developed a database called Gene4Denovo (http://www.genemed.tech/gene4denovo/), which allowed these genetic data to be conveniently catalogued, searched, browsed, and analysed. In addition, Gene4Denovo integrated data from >60 genomic sources to provide comprehensive variant-level and gene-level annotation and information regarding the DNMs and candidate genes. Furthermore, Gene4Denovo provides end-users with limited bioinformatics skills to analyse their own genetic data, perform comprehensive annotation, and prioritize candidate genes using custom parameters. In conclusion, Gene4Denovo conveniently allows for the accelerated interpretation of DNM pathogenicity and the clinical implication of DNMs in humans.

[1]  Jeffrey D. Mandell,et al.  De Novo Coding Variants Are Strongly Associated with Tourette Syndrome , 2019, European Neuropsychopharmacology.

[2]  Jingping Zhao,et al.  POGZ de novo missense variants in neuropsychiatric disorders , 2019, Molecular genetics & genomic medicine.

[3]  Jingping Zhao,et al.  Rare inherited missense variants of POGZ associate with autism risk and disrupt neuronal development. , 2019, Journal of genetics and genomics = Yi chuan xue bao.

[4]  Guan Ning Lin,et al.  De novo Mutations From Whole Exome Sequencing in Neurodevelopmental and Psychiatric Disorders: From Discovery to Application , 2019, Front. Genet..

[5]  J. Rosenfeld,et al.  De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith–Magenis syndrome , 2019, Genome Medicine.

[6]  Tudor Groza,et al.  Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources , 2018, Nucleic Acids Res..

[7]  Ryan L. Collins,et al.  Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder , 2018, Science.

[8]  Jeffrey D. Mandell,et al.  De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis. , 2018, Cell reports.

[9]  W. Chung,et al.  De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders , 2018, PLoS genetics.

[10]  Trygve E Bakken,et al.  Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity , 2018, Nature Genetics.

[11]  Deciphering Developmental Disorders Study,et al.  De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias , 2018 .

[12]  Klaus Lehnert,et al.  De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias. , 2018, American journal of human genetics.

[13]  H. Shang,et al.  Coding mutations in NUS1 contribute to Parkinson’s disease , 2018, Proceedings of the National Academy of Sciences.

[14]  S. Nelson,et al.  De novo truncating variants in the intronless IRF2BPL are responsible for developmental epileptic encephalopathy , 2018, Genetics in Medicine.

[15]  Yi Zhang,et al.  Performance evaluation of pathogenicity-computation methods for missense variants , 2018, Nucleic acids research.

[16]  Chunyu Liu,et al.  A comparative study of the genetic components of three subcategories of autism spectrum disorder , 2018, Molecular Psychiatry.

[17]  C. Walsh,et al.  De novo and inherited private variants in MAP1B in periventricular nodular heterotopia , 2018, PLoS genetics.

[18]  The Uniprot Consortium UniProt: the universal protein knowledgebase , 2018, Nucleic acids research.

[19]  T. Hara,et al.  Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder. , 2018, Cell reports.

[20]  Alex H. Wagner,et al.  DGIdb 3.0: a redesign and expansion of the drug–gene interaction database , 2017, bioRxiv.

[21]  James D Stephenson,et al.  Quantifying the contribution of recessive coding variation to developmental disorders , 2017, Science.

[22]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[23]  Yi Jiang,et al.  VarCards: an integrated genetic and clinical database for coding variants in the human genome , 2017, Nucleic Acids Res..

[24]  Xianfeng Li,et al.  EpiDenovo: a platform for linking regulatory de novo mutations to developmental epigenetics and diseases , 2017, Nucleic Acids Res..

[25]  Bradley P. Coe,et al.  Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications , 2017, Genome Medicine.

[26]  François Dubeau,et al.  High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. , 2017, American journal of human genetics.

[27]  Annelot M. Dekker,et al.  The role of de novo mutations in the development of amyotrophic lateral sclerosis , 2017, Human mutation.

[28]  Yufeng Shen,et al.  Distinct epigenomic patterns are associated with haploinsufficiency and predict risk genes of developmental disorders , 2017, Nature Communications.

[29]  Yufeng Shen,et al.  Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands , 2017, Nature Genetics.

[30]  Hannes P. Eggertsson,et al.  Parental influence on human germline de novo mutations in 1,548 trios from Iceland , 2017, Nature.

[31]  Zhong Sheng Sun,et al.  Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders , 2017, Molecular Psychiatry.

[32]  Hoang T. Nguyen,et al.  Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders , 2017, bioRxiv.

[33]  R. Lifton,et al.  De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis , 2017, Proceedings of the National Academy of Sciences.

[34]  Zhong Sheng Sun,et al.  Vitamin D‐related genes are subjected to significant de novo mutation burdens in autism spectrum disorder , 2017, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[35]  Christopher S. Poultney,et al.  Rates, Distribution, and Implications of Post-zygotic Mosaic Mutations in Autism Spectrum Disorder , 2017, Nature Neuroscience.

[36]  K. Kasai,et al.  Identification of candidate genes involved in the etiology of sporadic Tourette syndrome by exome sequencing , 2017, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[37]  G. Barsh,et al.  Genomic diagnosis for children with intellectual disability and/or developmental delay , 2017, Genome Medicine.

[38]  Jeffrey D. Mandell,et al.  De Novo Coding Variants Are Strongly Associated with Tourette Disorder , 2017, Neuron.

[39]  L. Lagae,et al.  Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders , 2017, Brain : a journal of neurology.

[40]  M. Daly,et al.  De novo variants in neurodevelopmental disorders with epilepsy , 2018, Nature Genetics.

[41]  Meixiao Shen,et al.  Trio-based exome sequencing arrests de novo mutations in early-onset high myopia , 2017, Proceedings of the National Academy of Sciences.

[42]  Stephen J. Guter,et al.  Leveraging blood serotonin as an endophenotype to identify de novo and rare variants involved in autism , 2017, Molecular Autism.

[43]  B. Frey,et al.  Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder , 2017, Nature Neuroscience.

[44]  Quan Li,et al.  InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. , 2017, American journal of human genetics.

[45]  Roy Ben-Shalom,et al.  Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures , 2017, Biological Psychiatry.

[46]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[47]  The Gene Ontology Consortium,et al.  Expansion of the Gene Ontology knowledgebase and resources , 2016, Nucleic Acids Res..

[48]  Mingming Jia,et al.  COSMIC: somatic cancer genetics at high-resolution , 2016, Nucleic Acids Res..

[49]  Silvio C. E. Tosatto,et al.  InterPro in 2017—beyond protein family and domain annotations , 2016, Nucleic Acids Res..

[50]  The Gene Ontology Consortium Expansion of the Gene Ontology knowledgebase and resources , 2016, Nucleic Acids Res..

[51]  Tudor Groza,et al.  The Human Phenotype Ontology in 2017 , 2016, Nucleic Acids Res..

[52]  Wei Li,et al.  mirDNMR: a gene-centered database of background de novo mutation rates in human , 2016, Nucleic Acids Res..

[53]  Raphael A. Bernier,et al.  denovo-db: a compendium of human de novo variants , 2016, Nucleic Acids Res..

[54]  Leif Groop,et al.  LoFtool: a gene intolerance score based on loss‐of‐function variants in 60 706 individuals , 2016, Bioinform..

[55]  Stephan J Sanders,et al.  Refining the role of de novo protein truncating variants in neurodevelopmental disorders using population reference samples , 2016, Nature Genetics.

[56]  Martin Ringwald,et al.  Mouse Genome Informatics (MGI): Resources for Mining Mouse Genetic, Genomic, and Biological Data in Support of Primary and Translational Research. , 2017, Methods in molecular biology.

[57]  S. Brunak,et al.  A scored human protein–protein interaction network to catalyze genomic interpretation , 2017, Nature Methods.

[58]  Gill Bejerano,et al.  M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity , 2016, Nature Genetics.

[59]  M. Owen,et al.  The implications of the shared genetics of psychiatric disorders , 2016, Nature Medicine.

[60]  Trevor Hastie,et al.  REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. , 2016, American journal of human genetics.

[61]  Daniel G. MacArthur,et al.  The ExAC browser: displaying reference data information from over 60 000 exomes , 2016, bioRxiv.

[62]  L. Vissers,et al.  Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability , 2016, Nature Neuroscience.

[63]  J. Roach,et al.  Parent-of-origin-specific signatures of de novo mutations , 2016, Nature Genetics.

[64]  N. Matoba,et al.  Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations , 2016, Molecular Psychiatry.

[65]  Christa Lese Martin,et al.  A Cross-Disorder Method to Identify Novel Candidate Genes for Developmental Brain Disorders. , 2016, JAMA psychiatry.

[66]  E. Bourel-ponchel,et al.  Whole‐exome sequencing improves the diagnosis yield in sporadic infantile spasm syndrome , 2016, Clinical genetics.

[67]  Chunyu Liu,et al.  Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database , 2016, Molecular Psychiatry.

[68]  Benjamin F. Voight,et al.  Nature Genetics Advance Online Publication a N a Ly S I S an Expanded Sequence Context Model Broadly Explains Variability in Polymorphism Levels across the Human Genome , 2022 .

[69]  I. Helbig,et al.  Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy , 2016, Genetics in Medicine.

[70]  J. Buxbaum,et al.  A SPECTRAL APPROACH INTEGRATING FUNCTIONAL GENOMIC ANNOTATIONS FOR CODING AND NONCODING VARIANTS , 2015, Nature Genetics.

[71]  P. Ng,et al.  SIFT missense predictions for genomes , 2015, Nature Protocols.

[72]  Arthur Wuster,et al.  Timing, rates and spectra of human germline mutation , 2015, Nature Genetics.

[73]  M. Fukunaga,et al.  Whole-exome sequencing and neurite outgrowth analysis in autism spectrum disorder , 2015, Journal of Human Genetics.

[74]  Ricardo Villamarín-Salomón,et al.  ClinVar: public archive of interpretations of clinically relevant variants , 2015, Nucleic Acids Res..

[75]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[76]  J. Rapoport,et al.  De novo variants in sporadic cases of childhood onset schizophrenia , 2015, European Journal of Human Genetics.

[77]  P. Kwok,et al.  Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects , 2015, Clinical genetics.

[78]  Latarsha J. Carithers,et al.  The Genotype-Tissue Expression (GTEx) Project. , 2015, Biopreservation and biobanking.

[79]  Jean-Michel Claverie,et al.  The human gene damage index as a gene-level approach to prioritizing exome variants , 2015, Proceedings of the National Academy of Sciences.

[80]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[81]  A. Singleton,et al.  A systematic screening to identify de novo mutations causing sporadic early-onset Parkinson's disease , 2015, Human molecular genetics.

[82]  Ayal B. Gussow,et al.  The Intolerance of Regulatory Sequence to Genetic Variation Predicts Gene Dosage Sensitivity , 2015, PLoS genetics.

[83]  D. Campion,et al.  De novo deleterious genetic variations target a biological network centered on Aβ peptide in early-onset Alzheimer disease , 2015, Molecular Psychiatry.

[84]  Alexander Schönhuth,et al.  Characteristics of de novo structural changes in the human genome , 2015, Genome research.

[85]  R. Gibbs,et al.  Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. , 2015, Human molecular genetics.

[86]  Kei-Hoi Cheung,et al.  A Statistical Framework to Predict Functional Non-Coding Regions in the Human Genome Through Integrated Analysis of Annotation Data , 2015, Scientific Reports.

[87]  Guy A Rouleau,et al.  Loss-of-function de novo mutations play an important role in severe human neural tube defects , 2015, Journal of Medical Genetics.

[88]  K. M. Steinberg,et al.  Exome sequencing of case-unaffected-parents trios reveals recessive and de novo genetic variants in sporadic ALS , 2015, Scientific Reports.

[89]  Xiaohui Xie,et al.  DANN: a deep learning approach for annotating the pathogenicity of genetic variants , 2015, Bioinform..

[90]  R A Gibbs,et al.  Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy , 2015, Molecular Psychiatry.

[91]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[92]  Colin Campbell,et al.  An integrative approach to predicting the functional effects of non-coding and coding sequence variation , 2015, Bioinform..

[93]  François Schiettecatte,et al.  OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders , 2014, Nucleic Acids Res..

[94]  Tatiana A. Tatusova,et al.  Gene: a gene-centered information resource at NCBI , 2014, Nucleic Acids Res..

[95]  A. Siepel,et al.  Probabilities of Fitness Consequences for Point Mutations Across the Human Genome , 2014, Nature Genetics.

[96]  D. Rujescu,et al.  Exome Sequencing in 53 Sporadic Cases of Schizophrenia Identifies 18 Putative Candidate Genes , 2014, PloS one.

[97]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[98]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[99]  Epilepsy Phenome,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[100]  Edouard Henrion,et al.  De Novo Mutations in Moderate or Severe Intellectual Disability , 2014, PLoS genetics.

[101]  D. Nickerson,et al.  Exome sequencing identifies a recurrent de novo ZSWIM6 mutation associated with acromelic frontonasal dysostosis. , 2014, American journal of human genetics.

[102]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[103]  L. Vissers,et al.  Genome sequencing identifies major causes of severe intellectual disability , 2014, Nature.

[104]  Jay Shendure,et al.  Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development , 2014, Cell.

[105]  Pieter B. T. Neerincx,et al.  Supplementary Information Whole-genome sequence variation , population structure and demographic history of the Dutch population , 2022 .

[106]  M. Owen,et al.  Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice , 2014, Genome Medicine.

[107]  Seungtai Yoon,et al.  De novo Mutations in Schizophrenia Implicate Chromatin Remodeling and Support a Genetic Overlap with Autism and Intellectual Disability , 2014, Molecular Psychiatry.

[108]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[109]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[110]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[111]  Michael Wigler,et al.  The role of de novo mutations in the genetics of autism spectrum disorders , 2014, Nature Reviews Genetics.

[112]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[113]  Kathryn Roeder,et al.  Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes , 2013, PLoS genetics.

[114]  L. Siever,et al.  Spatial and Temporal Mapping of De Novo Mutations in Schizophrenia to a Fetal Prefrontal Cortical Network , 2013, Cell.

[115]  K. Veeramah,et al.  Exome sequencing reveals new causal mutations in children with epileptic encephalopathies , 2013, Epilepsia.

[116]  H. Carter,et al.  Identifying Mendelian disease genes with the Variant Effect Scoring Tool , 2013, BMC Genomics.

[117]  G. Crabtree,et al.  Exome sequencing to identify de novo mutations in sporadic ALS trios , 2013, Nature Neuroscience.

[118]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[119]  David Adam,et al.  Mental health: On the spectrum , 2013, Nature.

[120]  S. Gabriel,et al.  Analysis of 6,515 exomes reveals a recent origin of most human protein-coding variants , 2012, Nature.

[121]  Tom R. Gaunt,et al.  Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models , 2012, Human mutation.

[122]  Lilia M. Iakoucheva,et al.  Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation , 2012, Cell.

[123]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[124]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[125]  A. Lees,et al.  Meta-Analysis of Early Nonmotor Features and Risk Factors for Parkinson Disease , 2012, Annals of neurology.

[126]  J. Miller,et al.  Predicting the Functional Effect of Amino Acid Substitutions and Indels , 2012, PloS one.

[127]  S. Levy,et al.  De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia , 2012, Nature Genetics.

[128]  S. Steinberg,et al.  Rate of de novo mutations and the importance of father’s age to disease risk , 2012, Nature.

[129]  S. Steinberg,et al.  Rate of de novo mutations, father’s age, and disease risk , 2012, Nature.

[130]  B. V. van Bon,et al.  Cantú syndrome is caused by mutations in ABCC9. , 2012, American journal of human genetics.

[131]  Jared C. Roach,et al.  Kaviar: an accessible system for testing SNV novelty , 2011, Bioinform..

[132]  S. Lok,et al.  Increased exonic de novo mutation rate in individuals with schizophrenia , 2011, Nature Genetics.

[133]  C. Sander,et al.  Predicting the functional impact of protein mutations: application to cancer genomics , 2011, Nucleic acids research.

[134]  Christian Gilissen,et al.  A de novo paradigm for mental retardation , 2010, Nature Genetics.

[135]  Jana Marie Schwarz,et al.  MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.

[136]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[137]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[138]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[139]  Renata C. Geer,et al.  The NCBI BioSystems database , 2009, Nucleic Acids Res..

[140]  Justin C. Fay,et al.  Identification of deleterious mutations within three human genomes. , 2009, Genome research.

[141]  Xiaohui Xie,et al.  Identifying novel constrained elements by exploiting biased substitution patterns , 2009, Bioinform..

[142]  David Haussler,et al.  New Methods for Detecting Lineage-Specific Selection , 2006, RECOMB.

[143]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[144]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[145]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[146]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[147]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..