Lukash plane waves, revisited

The Lukash metric is a homogeneous gravitational wave which at late times approximates the behaviour of a generic class of spatially homogenous cosmological models with monotonically decreasing energy density. The transcription from Brinkmann to Baldwin-Jeffery-Rosen (BJR) to Bianchi coordinates is presented and the relation to a Sturm-Liouville equation is explained. The 6-parameter isometry group is derived. In the Bianchi VII range of parameters we have two BJR transciptions. However using either of them induces a mere relabeling of the geodesics and isometries. Following pioneering work of Siklos, we provide a self-contained account of the geometry and global structure of the spacetime. The latter contains a Killing horizon to the future of which the spacetime resembles an anisotropic version of the Milne cosmology and to the past of which it resemble the Rindler wedge.

[1]  W. Unruh Notes on black-hole evaporation , 1976 .

[2]  G. Gibbons,et al.  Carroll symmetry of plane gravitational waves , 2017, 1702.08284.

[3]  F. Pirani,et al.  Gravitational waves in general relativity III. Exact plane waves , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  R. Devaney Celestial mechanics. , 1979, Science.

[5]  P. Negi Exact Solutions of Einstein's Field Equations , 2004, gr-qc/0401024.

[6]  G. Gibbons,et al.  Soft gravitons and the memory effect for plane gravitational waves , 2017, 1705.01378.

[7]  S. Hawking,et al.  Cosmological Event Horizons, Thermodynamics, and Particle Creation , 1977 .

[8]  S. Siklos Occurrence of whimper singularities , 1978 .

[9]  G. Gibbons,et al.  Black Holes in Thermal Equilibrium , 1976 .

[10]  S. Siklos Some Einstein spaces and their global properties , 1981 .

[11]  G. Ellis,et al.  On the isotropy of the Universe: do Bianchi cosmologies isotropize? , 1998 .

[12]  J. Barrow,et al.  Asymptotic stability of Bianchi type universes , 1986 .

[13]  M. MacCallum A class of homogeneous cosmological models III: Asymptotic behaviour , 1971 .

[14]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[15]  G. Ellis,et al.  Tilted homogeneous cosmological models , 1973 .

[16]  I. Bialynicki-Birula,et al.  Trapping and Guiding Bodies by Gravitational Waves Endowed with Angular Momentum. , 2018, Physical review letters.

[17]  A. Ilderton Screw-symmetric gravitational waves: A double copy of the vortex , 2018, Physics Letters B.

[18]  G. Gibbons,et al.  Velocity Memory Effect for polarized gravitational waves , 2018, 1802.09061.

[19]  G. Gibbons Quantized fields propagating in plane-wave spacetimes , 1975 .

[20]  L. Eisenhart Dynamical Trajectories and Geodesics , 1928 .

[21]  KLEINIAN GEOMETRY AND THE N = 2 SUPERSTRING , 1993, hep-th/9302073.

[22]  J. Lévy-leblond,et al.  Une nouvelle limite non-relativiste du groupe de Poincaré , 1965 .

[23]  M. Perrin,et al.  Chronoprojective invariance of the five-dimensional Schrodinger formalism , 1986 .

[24]  G. Ellis,et al.  Was the big bang a whimper? , 1974 .

[25]  M. Perrin,et al.  Bargmann structures and Newton-Cartan theory. , 1985, Physical review. D, Particles and fields.

[26]  J. Wainwright,et al.  Self-similar spatially homogeneous cosmologies: orthogonal perfect fluid and vacuum solutions , 1986 .

[27]  M. Good,et al.  Unruh-like effects: effective temperatures along stationary worldlines , 2020, Journal of high energy physics : JHEP.

[28]  Structure and stability of the Lukash plane-wave spacetime , 2004, gr-qc/0411070.

[29]  G. Gibbons,et al.  Ion traps and the memory effect for periodic gravitational waves , 2018, Physical Review D.

[30]  S. Deser Plane waves do not polarize the vacuum , 1975 .

[31]  G. Gibbons,et al.  Sturm–Liouville and Carroll: at the heart of the memory effect , 2018, General Relativity and Gravitation.

[32]  G. W. Gibbons,et al.  General very special relativity is Finsler geometry , 2007, 0707.2174.

[33]  G. Ellis,et al.  A class of homogeneous cosmological models , 1969 .

[34]  P. McKenna,et al.  Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam , 2017, 1707.06821.

[35]  Celestial mechanics, conformal structures, and gravitational waves. , 1991, Physical review. D, Particles and fields.

[36]  G. Gibbons,et al.  The Memory Effect for Plane Gravitational Waves , 2017, 1704.05997.

[37]  S. Hawking,et al.  Why is the Universe Isotropic , 1973 .

[38]  P. Zhang,et al.  Scaling and conformal symmetries for plane gravitational waves , 2019, Journal of Mathematical Physics.

[39]  T. Christodoulakis,et al.  The general solution of Bianchi type V I Ih vacuum cosmology , 2008, 0803.3710.

[40]  C. Torre,et al.  Gravitational waves: just plane symmetry , 1999, gr-qc/9907089.

[41]  Roland Triay,et al.  A Mille-feuille Universe , 1999 .

[42]  G. Gibbons,et al.  Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time , 2014, 1402.0657.

[43]  S. Hawking,et al.  The Rotation and Distortion of the Universe , 1973 .

[44]  D. Tsoubelis,et al.  Exact Bianchi IV cosmological model , 1977 .

[45]  D. Blair Gravitational waves in general relativity , 1991 .

[46]  Jacques E. Romain,et al.  Gravitation: An Introduction to Current Research , 1963 .

[47]  I. Ozsvath,et al.  An anti-Mach-metric , 1962 .