Peptide entry inhibitors of enveloped viruses: The importance of interfacial hydrophobicity

[1]  J. Feld,et al.  Hepatitis C virus infection , 2015, Canadian Medical Association Journal.

[2]  M. Saag,et al.  Enfuvirtide , 2002, Reactions Weekly.

[3]  D. Tobias,et al.  Structural plasticity in the topology of the membrane-interacting domain of HIV-1 gp41. , 2014, Biophysical journal.

[4]  Lu Lu,et al.  Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor , 2014, Nature Communications.

[5]  Manoj Kumar,et al.  AVPdb: a database of experimentally validated antiviral peptides targeting medically important viruses , 2013, Nucleic Acids Res..

[6]  D. Fisman,et al.  The epidemiology of MERS-CoV , 2013, The Lancet Infectious Diseases.

[7]  M. Koopmans,et al.  MERS coronavirus: Data gaps for laboratory preparedness , 2013, Journal of Clinical Virology.

[8]  John P. Moore,et al.  Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer , 2013, Science.

[9]  Robyn L. Stanfield,et al.  Hepatitis C Virus E2 Envelope Glycoprotein Core Structure , 2013, Science.

[10]  D. Moir,et al.  New Small Molecule Entry Inhibitors Targeting Hemagglutinin-Mediated Influenza A Virus Fusion , 2013, Journal of Virology.

[11]  F. Bussolino,et al.  The V1/V2 loop of HIV‐1 gp120 is necessary for Tat binding and consequent modulation of virus entry , 2013, FEBS letters.

[12]  J. Weisshaar,et al.  Localized permeabilization of E. coli membranes by the antimicrobial peptide Cecropin A. , 2013, Biochemistry.

[13]  Anders Wallqvist,et al.  A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses , 2013, PLoS neglected tropical diseases.

[14]  K. Hristova,et al.  Direct Cytosolic Delivery of Polar Cargo to Cells by Spontaneous Membrane-translocating Peptides* , 2013, The Journal of Biological Chemistry.

[15]  Y. Modis Class II Fusion Proteins , 2013, Advances in experimental medicine and biology.

[16]  J. Weisshaar,et al.  Real-time attack of LL-37 on single Bacillus subtilis cells. , 2013, Biochimica et biophysica acta.

[17]  M. Schleiss,et al.  Congenital cytomegalovirus infection: new prospects for prevention and therapy. , 2013, Pediatric clinics of North America.

[18]  Jianping Sun,et al.  Short‐peptide fusion inhibitors with high potency against wild‐type and enfuvirtide‐resistant HIV‐1 , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  Shibo Jiang,et al.  HIV-1 Fusion Is Blocked through Binding of GB Virus C E2D Peptides to the HIV-1 gp41 Disulfide Loop , 2013, PloS one.

[20]  Y. Modis,et al.  Crystal structure of glycoprotein C from Rift Valley fever virus , 2013, Proceedings of the National Academy of Sciences.

[21]  D. Craik,et al.  The Future of Peptide‐based Drugs , 2013, Chemical biology & drug design.

[22]  Å. Lundkvist,et al.  Dengue viruses – an overview , 2013, Infection ecology & epidemiology.

[23]  K. Hartshorn,et al.  The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. , 2013, The Journal of general virology.

[24]  J. Valpuesta,et al.  Recognition of Membrane-Bound Fusion-Peptide/MPER Complexes by the HIV-1 Neutralizing 2F5 Antibody: Implications for Anti-2F5 Immunogenicity , 2012, PloS one.

[25]  S. Harrison,et al.  Structure of a Dengue Virus Envelope Protein Late-Stage Fusion Intermediate , 2012, Journal of Virology.

[26]  M. Rossmann,et al.  Release of Dengue Virus Genome Induced by a Peptide Inhibitor , 2012, PloS one.

[27]  R. Desrosiers,et al.  The Tale of the Long Tail: the Cytoplasmic Domain of HIV-1 gp41 , 2012, Journal of Virology.

[28]  J. Batlle,et al.  Emerging viral infections‑-a potential threat for blood supply in the 21st century. , 2012, AIDS reviews.

[29]  Q. Jin,et al.  A human claudin‐1–derived peptide inhibits hepatitis C virus entry , 2012, Hepatology.

[30]  S. Holmberg,et al.  Evolving epidemiology of hepatitis C virus in the United States. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[31]  M. Selsted,et al.  θ-Defensins: Cyclic Peptides with Endless Potential* , 2012, The Journal of Biological Chemistry.

[32]  Yuxian He,et al.  Structural Basis of Potent and Broad HIV-1 Fusion Inhibitor CP32M* , 2012, The Journal of Biological Chemistry.

[33]  Yvonne Ligertwood,et al.  A novel family of peptides with potent activity against influenza A viruses. , 2012, The Journal of general virology.

[34]  D. Gantz,et al.  Hapivirins and Diprovirins: Novel θ-Defensin Analogs with Potent Activity against Influenza A Virus , 2012, The Journal of Immunology.

[35]  J. York,et al.  The Curious Case of Arenavirus Entry, and Its Inhibition , 2012, Viruses.

[36]  Y. Tao,et al.  Bunyavirus: structure and replication. , 2012, Advances in experimental medicine and biology.

[37]  Yohei Watanabe,et al.  The changing nature of avian influenza A virus (H5N1). , 2012, Trends in microbiology.

[38]  H. Garg,et al.  Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy. , 2011, Current topics in medicinal chemistry.

[39]  Wei Yang,et al.  Rational Design of Peptides with Anti‐HCV/HIV Activities and Enhanced Specificity , 2011, Chemical biology & drug design.

[40]  Jeremy C. Jones,et al.  Virus aggregating peptide enhances the cell-mediated response to influenza virus vaccine. , 2011, Vaccine.

[41]  Kelly K. Lee,et al.  Capturing a Fusion Intermediate of Influenza Hemagglutinin with a Cholesterol-conjugated Peptide, a New Antiviral Strategy for Influenza Virus* , 2011, The Journal of Biological Chemistry.

[42]  Benjamin J. Cowling,et al.  The Age-Specific Cumulative Incidence of Infection with Pandemic Influenza H1N1 2009 Was Similar in Various Countries Prior to Vaccination , 2011, PloS one.

[43]  B. Fleckenstein,et al.  Peptides Derived from a Distinct Region of GB Virus C Glycoprotein E2 Mediate Strain-Specific HIV-1 Entry Inhibition , 2011, Journal of Virology.

[44]  William C. Wimley,et al.  Antimicrobial Peptides: Successes, Challenges and Unanswered Questions , 2011, The Journal of Membrane Biology.

[45]  Jeremy C. Jones,et al.  Identification of the Minimal Active Sequence of an Anti-Influenza Virus Peptide , 2011, Antimicrobial Agents and Chemotherapy.

[46]  J. Levy Virus-Host Interactions in HIV Pathogenesis: directions for therapy , 2011 .

[47]  T. Jardetzky,et al.  Class III viral membrane fusion proteins. , 2011, Advances in experimental medicine and biology.

[48]  M. Pastey,et al.  A RhoA-derived peptide inhibits human immunodeficiency virus-1 entry in vitro. , 2011, Current HIV research.

[49]  S. Sprang,et al.  A Specific Interaction of Small Molecule Entry Inhibitors with the Envelope Glycoprotein Complex of the Junín Hemorrhagic Fever Arenavirus* , 2010, The Journal of Biological Chemistry.

[50]  William C Wimley,et al.  Describing the mechanism of antimicrobial peptide action with the interfacial activity model. , 2010, ACS chemical biology.

[51]  S. Harrison,et al.  Peptide Inhibitors of Flavivirus Entry Derived from the E Protein Stem , 2010, Journal of Virology.

[52]  G. Kwon,et al.  The Virucidal EB Peptide Protects Host Cells from Herpes Simplex Virus Type 1 Infection in the Presence of Serum Albumin and Aggregates Proteins in a Detergent-Like Manner , 2010, Antimicrobial Agents and Chemotherapy.

[53]  G. Wong,et al.  Arginine‐rich cell‐penetrating peptides , 2010, FEBS letters.

[54]  S. Harrison,et al.  Peptide Inhibitors of Dengue-Virus Entry Target a Late-Stage Fusion Intermediate , 2010, PLoS pathogens.

[55]  I. Adam,et al.  Manifestations of severe Rift Valley fever in Sudan. , 2010, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[56]  J. d'Alayer,et al.  The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule , 2010, PLoS pathogens.

[57]  M. Khrestchatisky,et al.  Synthetic therapeutic peptides: science and market. , 2010, Drug discovery today.

[58]  K. Stiasny,et al.  Molecular mechanisms of flavivirus membrane fusion , 2011, Amino Acids.

[59]  C. Morris,et al.  Peptide inhibition of human cytomegalovirus infection , 2011, Virology Journal.

[60]  S. White,et al.  MPEx: A tool for exploring membrane proteins , 2009, Protein science : a publication of the Protein Society.

[61]  Min Lu,et al.  Structural and biological mimicry of protein surface recognition by α/β-peptide foldamers , 2009, Proceedings of the National Academy of Sciences.

[62]  A. Waring,et al.  Interactions of α-, β-, and θ-Defensins with Influenza A Virus and Surfactant Protein D , 2009, The Journal of Immunology.

[63]  J. C. Jones,et al.  Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide. , 2009, Virology.

[64]  J. Levy HIV pathogenesis: 25 years of progress and persistent challenges , 2009, AIDS.

[65]  C. Brandt,et al.  Multiple Peptides Homologous to Herpes Simplex Virus Type 1 Glycoprotein B Inhibit Viral Infection , 2008, Antimicrobial Agents and Chemotherapy.

[66]  Shibo Jiang,et al.  Potent HIV fusion inhibitors against Enfuvirtide-resistant HIV-1 strains , 2008, Proceedings of the National Academy of Sciences.

[67]  A. W. Schüttelkopf,et al.  Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope , 2008, Retrovirology.

[68]  Ramesh Rathinakumar,et al.  Biomolecular engineering by combinatorial design and high-throughput screening: small, soluble peptides that permeabilize membranes. , 2008, Journal of the American Chemical Society.

[69]  S. Harrison Viral membrane fusion , 2008, Nature Structural &Molecular Biology.

[70]  F. Chisari,et al.  A virocidal amphipathic α-helical peptide that inhibits hepatitis C virus infection in vitro , 2008, Proceedings of the National Academy of Sciences.

[71]  A. Sabahi Early events in hepatitis C virus infection: An interplay of viral entry, decay, and density , 2008 .

[72]  S. Roche,et al.  Structure of the Prefusion Form of the Vesicular Stomatitis Virus Glycoprotein G , 2007, Science.

[73]  J. Taubenberger,et al.  Discovery and Characterization of the 1918 Pandemic Influenza Virus in Historical Context , 2005, Antiviral therapy.

[74]  Ashish,et al.  Antiviral Peptides Targeting the West Nile Virus Envelope Protein , 2006, Journal of Virology.

[75]  C. Wood,et al.  Therapeutic peptides: technological advances driving peptides into development. , 2006, Current opinion in biotechnology.

[76]  E. Turpin,et al.  Inhibition of Influenza Virus Infection by a Novel Antiviral Peptide That Targets Viral Attachment to Cells , 2006, Journal of Virology.

[77]  S. Roche,et al.  Crystal Structure of the Low-pH Form of the Vesicular Stomatitis Virus Glycoprotein G , 2006, Science.

[78]  R. Hancock,et al.  Peptide Antimicrobial Agents , 2006, Clinical Microbiology Reviews.

[79]  William C Wimley,et al.  Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein , 2006, Virus Research.

[80]  T. Falla,et al.  Antimicrobial peptides: therapeutic potential , 2006, Expert opinion on pharmacotherapy.

[81]  W. Wimley,et al.  Identification and Characterization of the Putative Fusion Peptide of the Severe Acute Respiratory Syndrome-Associated Coronavirus Spike Protein , 2005, Journal of Virology.

[82]  Scott F Michael,et al.  Peptide inhibitors of dengue virus and West Nile virus infectivity , 2005, Virology Journal.

[83]  Shibo Jiang,et al.  Different from the HIV Fusion Inhibitor C34, the Anti-HIV Drug Fuzeon (T-20) Inhibits HIV-1 Entry by Targeting Multiple Sites in gp41 and gp120* , 2005, Journal of Biological Chemistry.

[84]  W. Wimley,et al.  The aromatic domain of the coronavirus class I viral fusion protein induces membrane permeabilization: putative role during viral entry. , 2005, Biochemistry.

[85]  A. Ouellette,et al.  Differential Effects on Human Immunodeficiency Virus Type 1 Replication by α-Defensins with Comparable Bactericidal Activities , 2004, Journal of Virology.

[86]  Timothy S Baker,et al.  Conformational changes of the flavivirus E glycoprotein. , 2004, Structure.

[87]  B. Graham,et al.  Inhibition of respiratory syncytial virus by RhoA-derived peptides: implications for the development of improved antiviral agents targeting heparin-binding viruses. , 2004, The Journal of antimicrobial chemotherapy.

[88]  D. Cooper,et al.  Peptide inhibitors of virus-cell fusion: enfuvirtide as a case study in clinical discovery and development. , 2004, The Lancet. Infectious diseases.

[89]  Elizabeth A. Wagar,et al.  θ Defensins Protect Cells from Infection by Herpes Simplex Virus by Inhibiting Viral Adhesion and Entry , 2004, Journal of Virology.

[90]  R. Doms,et al.  HIV Transmission , 2004, The Journal of experimental medicine.

[91]  Michael Greenberg,et al.  Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes , 2004, Nature Reviews Drug Discovery.

[92]  J. A. Comer,et al.  Ultrastructural Characterization of SARS Coronavirus , 2004, Emerging infectious diseases.

[93]  William M. Lee,et al.  Conformational mapping of the N‐terminal peptide of HIV‐1 gp41 in lipid detergent and aqueous environments using 13C‐enhanced Fourier transform infrared spectroscopy , 2003, Protein science : a publication of the Protein Society.

[94]  Horatio B Fung,et al.  Enfuvirtide: a fusion inhibitor for the treatment of HIV infection. , 2004, Clinical therapeutics.

[95]  Ali S Khan,et al.  Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[96]  Ying Zhang,et al.  Visualization of membrane protein domains by cryo-electron microscopy of dengue virus , 2003, Nature Structural Biology.

[97]  R. Longnecker,et al.  Herpesvirus Entry: an Update , 2003, Journal of Virology.

[98]  Y. Modis,et al.  A ligand-binding pocket in the dengue virus envelope glycoprotein , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[99]  J. H. Strauss,et al.  Viruses and Human Disease , 2002 .

[100]  H. Vogel,et al.  The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. , 2001, Biochemistry.

[101]  S. Hammer,et al.  HIV fusion and its inhibition. , 2001, Antiviral research.

[102]  S. A. Gallo,et al.  Mode of Action of an Antiviral Peptide from HIV-1 , 2001, The Journal of Biological Chemistry.

[103]  J L Nieva,et al.  Hydrophobic-at-Interface Regions in Viral Fusion Protein Ectodomains , 2000, Bioscience reports.

[104]  T. Stegmann,et al.  Membrane Fusion Mechanisms: The Influenza Hemagglutinin Paradigm and its Implications for Intracellular Fusion , 2000, Traffic.

[105]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[106]  J. Crowe,et al.  RhoA Interacts with the Fusion Glycoprotein of Respiratory Syncytial Virus and Facilitates Virus-Induced Syncytium Formation , 1999, Journal of Virology.

[107]  S H White,et al.  Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. , 1999, Journal of molecular biology.

[108]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[109]  S H White,et al.  Hydrophobic interactions of peptides with membrane interfaces. , 1998, Biochimica et biophysica acta.

[110]  S. White,et al.  The preference of tryptophan for membrane interfaces. , 1998, Biochemistry.

[111]  S H White,et al.  Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. , 1998, Journal of molecular biology.

[112]  Kathleen A. Boyle,et al.  Receptor-Binding Properties of a Soluble Form of Human Cytomegalovirus Glycoprotein B , 1998, Journal of Virology.

[113]  Deborah Fass,et al.  Core Structure of gp41 from the HIV Envelope Glycoprotein , 1997, Cell.

[114]  Stephen H. White,et al.  Experimentally determined hydrophobicity scale for proteins at membrane interfaces , 1996, Nature Structural Biology.

[115]  Virginia Litwin,et al.  HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5 , 1996, Nature.

[116]  D. Weissman,et al.  Immunopathogenic Mechanisms of HIV Infection , 1996, Annals of Internal Medicine.

[117]  D. Lambert,et al.  Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Y. Shai,et al.  A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus‐cell fusion: an emerging similarity with functional domains of other viruses. , 1995, The EMBO journal.

[119]  F. Taguchi The S2 subunit of the murine coronavirus spike protein is not involved in receptor binding , 1995, Journal of virology.

[120]  A. Fauci,et al.  New concepts in the immunopathogenesis of HIV infection. , 1995, Annual review of immunology.

[121]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[122]  T. Matthews,et al.  A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. , 1993, AIDS research and human retroviruses.

[123]  P. Wilton Spanish flu outdid WWI in number of lives claimed. , 1993, CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne.

[124]  P. S. Kim,et al.  A spring-loaded mechanism for the conformational change of influenza hemagglutinin , 1993, Cell.

[125]  G. Pugliese,et al.  Severe Streptococcus pyogenes Infections, United Kingdom, 2003–2004 , 2008, Emerging infectious diseases.

[126]  T. Oas,et al.  A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[127]  F. Richards,et al.  The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. , 1991, The Journal of biological chemistry.

[128]  D. Coy,et al.  Characterization of a putative cellular receptor for HIV-1 transmembrane glycoprotein using synthetic peptides. , 1990, AIDS.

[129]  H De Loof,et al.  Amphipathic helix motif: Classes and properties , 1990, Proteins.

[130]  M. Zasloff,et al.  Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor , 1987 .

[131]  D. Cistola,et al.  The Ionization Behavior of Fatty Acids and Bile Acids in Micelles and Membranes , 1984, Hepatology.

[132]  D. Tosteson,et al.  The sting. Melittin forms channels in lipid bilayers. , 1981, Biophysical journal.

[133]  R. Lehrer,et al.  Microbicidal cationic proteins of rabbit alveolar macrophages: amino acid composition and functional attributes , 1981, Infection and immunity.

[134]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.