A VISUAL CONCEPT LANGUAGE FOR EMG SPELLER

Assistive technologies provide means for disabled or impaired people to extend their capabilities, communicate and control their environment using alternative and augmentative forms of interaction. Neural-computer interface (NCI) is a communication system that translates neural activity of human muscular system (electromyography (EMG) signals) into commands for a computer or other digital device. The paper discusses the development of the visual concept language for EMG speller (text entry application) based on the application of sound visual communication methodological principles. We present a description of language based on the Speller Visual Communication Language Ontology (SVCLO) developed on the analysis of basic requirements of impaired users living in a closed Ambient Assisted Living environment. Evaluation of the language is given.

[1]  Miquel Sànchez-Marrè,et al.  Assistive technologies for the disabled and for the new generation of senior citizens: the e-Tools architecture , 2003, AI Commun..

[2]  I. Scott MacKenzie,et al.  Phrase sets for evaluating text entry techniques , 2003, CHI Extended Abstracts.

[3]  Daniel L. Moody,et al.  The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering , 2009, IEEE Transactions on Software Engineering.

[4]  Robertas Damasevicius,et al.  Development of EMG-Based Speller , 2014, Interacción '14.

[5]  Christina L. James,et al.  Text input for mobile devices: comparing model prediction to actual performance , 2001, CHI.

[6]  Colin Potts,et al.  Design of Everyday Things , 1988 .

[7]  Christel Kemke About the Ontology of Actions , 2001 .

[8]  J. Bateman,et al.  Towards a generic foundation for spatial ontology , 2004 .

[9]  E. Sellers,et al.  How many people are able to control a P300-based brain–computer interface (BCI)? , 2009, Neuroscience Letters.

[10]  Giancarlo Guizzardi,et al.  On Ontology, ontologies, Conceptualizations, Modeling Languages, and (Meta)Models , 2007, DB&IS.

[11]  Michael Smyth,et al.  Minimising Conceptual Baggage: Making Choices about Metaphor , 1994, BCS HCI.

[12]  Per Ola Kristensson,et al.  A versatile dataset for text entry evaluations based on genuine mobile emails , 2011, Mobile HCI.

[13]  Akiyo Kano Evaluating Phrase Sets for Use with Text Entry Method Evaluation with Dyslexic Participants , 2005 .

[14]  Raquel Hervás,et al.  EmoTales: creating a corpus of folk tales with emotional annotations , 2012, Lang. Resour. Evaluation.

[15]  Melissa Dawe,et al.  Desperately seeking simplicity: how young adults with cognitive disabilities and their families adopt assistive technologies , 2006, CHI.

[16]  Robertas Damasevicius,et al.  EMG speller with adaptive stimulus rate and dictionary support , 2014, 2014 Federated Conference on Computer Science and Information Systems.

[17]  Charles Gouin-Vallerand,et al.  A standard ontology for smart spaces , 2010, Int. J. Web Grid Serv..

[18]  Vittorio Miori,et al.  Anticipating Health Hazards through an Ontology-Based, IoT Domotic Environment , 2012, 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing.

[19]  A. Mehrabian Basic Dimensions For A General Psychological Theory , 1980 .

[20]  Satria Hutomo Jihan,et al.  Humanitarian Assistance Ontology for Emergency Disaster Response , 2014, IEEE Intelligent Systems.

[21]  Marco Grassi Developing HEO Human Emotions Ontology , 2009, COST 2101/2102 Conference.

[22]  Fulvio Corno,et al.  DogOnt - Ontology Modeling for Intelligent Domotic Environments , 2008, SEMWEB.

[23]  Mukhtiar Memon,et al.  Ambient Assisted Living Healthcare Frameworks, Platforms, Standards, and Quality Attributes , 2014, Sensors.

[24]  Mark Mizuko,et al.  Transparency and ease of learning of symbols represented by Blissymbols, PCS, and Picsyms , 1987 .

[25]  Richard Fikes,et al.  A Reusable Time Ontology , 2002 .

[26]  H. Lövheim A new three-dimensional model for emotions and monoamine neurotransmitters. , 2012, Medical hypotheses.

[27]  Kent Lyons,et al.  Analytical Evaluation of the Impact of Phrase Set on Text Entry Rates , 2012 .

[28]  Christopher Brewster,et al.  Ontologies for crisis management: A review of state of the art in ontology design and usability , 2013, ISCRAM.

[29]  Stephen Ullmann,et al.  Semantics: An Introduction to the Science of Meaning , 1962 .

[30]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[31]  José L. V. Mejino,et al.  Pushing the envelope: challenges in a frame-based representation of human anatomy , 2004, Data Knowl. Eng..

[32]  Adam Pease,et al.  Towards a standard upper ontology , 2001, FOIS.

[33]  Mark D. Dunlop,et al.  Grand challenges in text entry , 2013, CHI Extended Abstracts.

[34]  Jacques Bertin,et al.  Semiology of Graphics - Diagrams, Networks, Maps , 2010 .

[35]  N. Hari Narayanan,et al.  Visual language theory: towards a human computer interaction perspective , 1998 .

[36]  Janet C. Read,et al.  Children's phrase set for text input method evaluations , 2006, NordiCHI '06.

[37]  Radziah Mohamad,et al.  Medical Ontology in the Dynamic Healthcare Environment , 2012, ANT/MobiWIS.

[38]  Sharon Glennen,et al.  The handbook of augmentative and alternative communication , 1997 .

[39]  Mari Carmen Domingo,et al.  An overview of the Internet of Things for people with disabilities , 2012, J. Netw. Comput. Appl..

[40]  Aldo Gangemi,et al.  Design Patterns for Legal Ontology Constructions , 2007, LOAIT.

[41]  Peter Gregor,et al.  Cognitive difficulties and access to information systems: an interaction design perspective , 2005, ASAC.

[42]  Arjan Kuijper,et al.  Interactive Personalization of Ambient Assisted Living Environments , 2011, HCI.

[43]  P. Wilson,et al.  The Nature of Emotions , 2012 .