Sharp numerical simulation of incompressible two-phase flows

Abstract We present a numerical method for simulating incompressible immiscible fluids, in two and three spatial dimensions. It is constructed as a modified pressure correction projection method on adaptive non-graded Oc/Quadtree Cartesian grids, using the level-set framework to capture the moving interface between the two fluids. The sharp treatment of the interface position, of the fluid parameter discontinuities, and of the interfacial jump conditions ensures convergence in the L ∞ -norm. Using a novel construction for the pressure guess, we are able to alleviate the standard time step restriction incurred by capillary forces. The solver is validated numerically and employed to simulate the dynamics of physically relevant problems such as rising bubbles and viscous droplets in electric fields.

[1]  David Saintillan,et al.  Electrohydrodynamics of viscous drops in strong electric fields: numerical simulations , 2016, Journal of Fluid Mechanics.

[2]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[3]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[4]  Paul Vigneaux,et al.  On stability condition for bifluid flows with surface tension: Application to microfluidics , 2008, J. Comput. Phys..

[5]  Frédéric Gibou,et al.  A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive Quad/Octrees , 2015, J. Comput. Phys..

[6]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[7]  Frédéric Gibou,et al.  A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids , 2006, J. Comput. Phys..

[8]  Aditya S. Khair,et al.  The influence of inertia and charge relaxation on electrohydrodynamic drop deformation , 2013 .

[9]  R.I.L. Guthrie,et al.  The stability of gas envelopes trailed behind large spherical cap bubbles rising through viscous liquids , 1969 .

[10]  Mark Sussman,et al.  A sharp interface method for incompressible two-phase flows , 2007, J. Comput. Phys..

[11]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[12]  Frédéric Gibou,et al.  A Multigrid Method on Non-Graded Adaptive Octree and Quadtree Cartesian Grids , 2013, J. Sci. Comput..

[13]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[14]  Chris H Rycroft,et al.  VORO++: a three-dimensional voronoi cell library in C++. , 2009, Chaos.

[15]  R. Fedkiw,et al.  A boundary condition capturing method for incompressible flame discontinuities , 2001 .

[16]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[17]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[18]  J. R. Melcher,et al.  Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses , 1969 .

[19]  Stéphane Popinet,et al.  A front-tracking algorithm for accurate representation of surface tension , 1999 .

[20]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[21]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[22]  Frédéric Gibou,et al.  Solving elliptic problems with discontinuities on irregular domains - the Voronoi Interface Method , 2015, J. Comput. Phys..

[23]  David A Boy,et al.  An Adaptive, Finite Difference Solver for the Nonlinear Poisson-Boltzmann Equation with Applications to Biomolecular Computations , 2013 .

[24]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[25]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[26]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[27]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[28]  David Saintillan,et al.  A nonlinear small-deformation theory for transient droplet electrohydrodynamics , 2016, Journal of Fluid Mechanics.

[29]  D. Saville ELECTROHYDRODYNAMICS:The Taylor-Melcher Leaky Dielectric Model , 1997 .

[30]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[31]  G. Taylor Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  Seungwon Shin,et al.  Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity , 2002 .

[33]  T. Aslam A partial differential equation approach to multidimensional extrapolation , 2004 .

[34]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[35]  Ronald Fedkiw,et al.  Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid , 2012, J. Comput. Phys..

[36]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[37]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[38]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[39]  James Q. Feng,et al.  A 2D electrohydrodynamic model for electrorotation of fluid drops. , 2002, Journal of colloid and interface science.

[40]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[41]  Petia M. Vlahovska,et al.  Electrohydrodynamics of drops in strong uniform dc electric fields , 2010 .

[42]  Martin E. Weber,et al.  Bubbles in viscous liquids: shapes, wakes and velocities , 1981, Journal of Fluid Mechanics.

[43]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[44]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[45]  Ann S. Almgren,et al.  An adaptive level set approach for incompressible two-phase flows , 1997 .