Esterase- and pH-responsive poly(β-amino ester)-capped mesoporous silica nanoparticles for drug delivery.

Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells.

[1]  J. F. Stoddart,et al.  Sugar and pH dual-responsive mesoporous silica nanocontainers based on competitive binding mechanisms. , 2015, Nanoscale.

[2]  Hui Gao,et al.  Self-assembly and applications of poly(glycidyl methacrylate)s and their derivatives. , 2014, Chemical communications.

[3]  Jianjun Cheng,et al.  Trigger-Responsive Poly(β-amino ester) Hydrogels. , 2014, ACS macro letters.

[4]  Y. Ning,et al.  Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods , 2014 .

[5]  G. Storm,et al.  Liposomal nanomedicines in the treatment of prostate cancer. , 2014, Cancer treatment reviews.

[6]  M. Vallet‐Regí Bio-Ceramics with Clinical Applications: Vallet/Bio-Ceramics with Clinical Applications , 2014 .

[7]  Yulong Sun,et al.  Stimuli-responsive biocompatible nanovalves based on β-cyclodextrin modified poly(glycidyl methacrylate) , 2014 .

[8]  Ying-Wei Yang,et al.  Switchable host-guest systems on surfaces. , 2014, Accounts of chemical research.

[9]  Xi-long Qiu,et al.  Acetylcholine-triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors. , 2014, Chemistry.

[10]  J. C. Barnes,et al.  A reversible light-operated nanovalve on mesoporous silica nanoparticles. , 2014, Nanoscale.

[11]  Lizhi Wang,et al.  Nanoassembles constructed from mesoporous silica nanoparticles and surface-coated multilayer polyelectrolytes for controlled drug delivery , 2014 .

[12]  T. Bein,et al.  Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery , 2014 .

[13]  Jun Lin,et al.  Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. , 2013, Small.

[14]  Xinqi Chen,et al.  New methods for improved characterization of silica nanoparticle-based drug delivery systems. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[15]  Yang Jiao,et al.  Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. , 2013, Journal of materials chemistry. B.

[16]  J. F. Stoddart,et al.  Mechanized silica nanoparticles based on pillar[5]arenes for on-command cargo release. , 2013, Small.

[17]  J. Zink,et al.  Functioning of nanovalves on polymer coated mesoporous silica Nanoparticles. , 2013, Nanoscale.

[18]  Yue Zhou,et al.  Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. , 2013, Chemical communications.

[19]  Shun Yang,et al.  Visible-light degradable polymer coated hollow mesoporous silica nanoparticles for controlled drug release and cell imaging. , 2013, Journal of materials chemistry. B.

[20]  E. Marin,et al.  Critical evaluation of biodegradable polymers used in nanodrugs , 2013, International journal of nanomedicine.

[21]  J. F. Stoddart,et al.  Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. , 2013, Journal of the American Chemical Society.

[22]  R. Martínez‐Máñez,et al.  Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles. , 2013, Chemistry.

[23]  T. Bein,et al.  Targeted drug delivery in cancer cells with red-light photoactivated mesoporous silica nanoparticles. , 2013, Nano letters.

[24]  Lei Sun,et al.  A pH gated, glucose-sensitive nanoparticle based on worm-like mesoporous silica for controlled insulin release. , 2013, The journal of physical chemistry. B.

[25]  Tao Liu,et al.  Photo-degradable, protein-polyelectrolyte complex-coated, mesoporous silica nanoparticles for controlled co-release of protein and model drugs. , 2013, Macromolecular rapid communications.

[26]  R. Martínez‐Máñez,et al.  Gated silica mesoporous supports for controlled release and signaling applications. , 2013, Accounts of chemical research.

[27]  Yang Wang,et al.  Bioresponsive Controlled Drug Release Based on Mesoporous Silica Nanoparticles Coated with Reductively Sheddable Polymer Shell , 2013 .

[28]  Eric C. Carnes,et al.  Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. , 2013, Accounts of chemical research.

[29]  M. Vallet‐Regí,et al.  Biomedical Applications of Mesoporous Ceramics: Drug Delivery, Smart Materials and Bone Tissue Engineering , 2012 .

[30]  Sean Xiao‐An Zhang,et al.  Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve. , 2012, Chemistry.

[31]  Jun Lin,et al.  Functionalized mesoporous silica materials for controlled drug delivery. , 2012, Chemical Society reviews.

[32]  Zongxi Li,et al.  Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.

[33]  Yingwei Yang Towards biocompatible nanovalves based on mesoporous silica nanoparticles , 2011 .

[34]  Michael J. Sailor,et al.  Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug Release , 2011, Journal of the American Chemical Society.

[35]  Courtney R. Thomas,et al.  Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. , 2011, Accounts of chemical research.

[36]  Jia Guo,et al.  Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release , 2011 .

[37]  Tian Xia,et al.  Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. , 2011, ACS nano.

[38]  Cecilia Sahlgren,et al.  Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles--opportunities & challenges. , 2010, Nanoscale.

[39]  T. Bein,et al.  Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles , 2010 .

[40]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles for intracellular controlled drug delivery. , 2010, Small.

[41]  Yuen A. Lau,et al.  Mechanised nanoparticles for drug delivery. , 2009, Nanoscale.

[42]  J. F. Stoddart,et al.  pH clock-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[43]  Ying-Wei Yang,et al.  Dual-controlled nanoparticles exhibiting AND logic. , 2009, Journal of the American Chemical Society.

[44]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[45]  Robert Langer,et al.  Impact of nanotechnology on drug delivery. , 2009, ACS nano.

[46]  Robert Langer,et al.  A combinatorial polymer library approach yields insight into nonviral gene delivery. , 2008, Accounts of chemical research.

[47]  J. Bosman,et al.  Aspirin Sensitizes Cancer Cells to TRAIL–Induced Apoptosis by Reducing Survivin Levels , 2008, Clinical Cancer Research.

[48]  J. F. Stoddart,et al.  pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.

[49]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[50]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[51]  Brian G. Trewyn,et al.  Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications , 2007 .

[52]  Ana B. Descalzo,et al.  The supramolecular chemistry of organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[53]  Daniel G. Anderson,et al.  Biodegradable polymeric vectors for gene delivery to human endothelial cells. , 2006, Bioconjugate chemistry.

[54]  T. Webster,et al.  Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition , 2006, International journal of nanomedicine.

[55]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[56]  M. Jäättelä,et al.  Lysosomes as targets for cancer therapy. , 2005, Cancer research.

[57]  R.J. Gillies,et al.  pH imaging , 2004, IEEE Engineering in Medicine and Biology Magazine.

[58]  J. Brayer,et al.  Arginase I Production in the Tumor Microenvironment by Mature Myeloid Cells Inhibits T-Cell Receptor Expression and Antigen-Specific T-Cell Responses , 2004, Cancer Research.

[59]  Michael S Freund,et al.  Potentiometric saccharide detection based on the pK(a) changes of poly(aniline boronic acid). , 2002, Journal of the American Chemical Society.

[60]  Binghe Wang,et al.  A detailed examination of boronic acid–diol complexation , 2002 .

[61]  R. Langer,et al.  Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. , 2001, Journal of the American Chemical Society.

[62]  Robert Langer,et al.  Degradable Poly(β-amino esters): Synthesis, Characterization, and Self-Assembly with Plasmid DNA , 2000 .

[63]  S. Shinkai,et al.  Saccharide Sensing with Molecular Receptors Based on Boronic Acid , 1996 .

[64]  R. Skeel Handbook of Cancer Chemotherapy , 1995 .

[65]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[66]  I. Tannock,et al.  Acid pH in tumors and its potential for therapeutic exploitation. , 1989, Cancer research.

[67]  A. Böcking,et al.  Esterases in histochemistry and ultrahistochemistry , 1976, The Histochemical Journal.

[68]  B. Monis,et al.  Cytochemical study of esterase activity of human neoplasms and stromal macrophages , 1961, Cancer.

[69]  A. Seligman,et al.  Histochemical demonstration of esterase in malignant tumors. , 1951, Cancer research.

[70]  Hui Gao,et al.  Mesoporous Silica Nanoparticles Coated by Layer-by-Layer Self-assembly Using Cucurbit[7]uril for in Vitro and in Vivo Anticancer Drug Release , 2014, Chemistry of materials : a publication of the American Chemical Society.

[71]  Umer Rashid,et al.  Nanomaterials in combating cancer: therapeutic applications and developments. , 2014, Nanomedicine : nanotechnology, biology, and medicine.

[72]  W. S. Vanden Berg-Foels,et al.  Bioengineering strategies for designing targeted cancer therapies. , 2013, Advances in cancer research.

[73]  Robert Langer,et al.  Poly(beta-amino esters): procedures for synthesis and gene delivery. , 2009, Methods in molecular biology.

[74]  I Mellman,et al.  Acidification of the endocytic and exocytic pathways. , 1986, Annual review of biochemistry.