Insect olfaction from model systems to disease control

Great progress has been made in the field of insect olfaction in recent years. Receptors, neurons, and circuits have been defined in considerable detail, and the mechanisms by which they detect, encode, and process sensory stimuli are being unraveled. We provide a guide to recent progress in the field, with special attention to advances made in the genetic model organism Drosophila. We highlight key questions that merit additional investigation. We then present our view of how recent advances may be applied to the control of disease-carrying insects such as mosquitoes, which transmit disease to hundreds of millions of people each year. We suggest how progress in defining the basic mechanisms of insect olfaction may lead to means of disrupting host-seeking and other olfactory behaviors, thereby reducing the transmission of deadly diseases.

[1]  G. Miesenböck,et al.  Excitatory Local Circuits and Their Implications for Olfactory Processing in the Fly Antennal Lobe , 2007, Cell.

[2]  B. Dickson,et al.  A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone , 2007, Nature.

[3]  S. B. McIver Sensilla mosquitoes (Diptera: Culicidae). , 1982, Journal of medical entomology.

[4]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[5]  P. Guerenstein,et al.  Host-seeking: How triatomines acquire and make use of information to find blood. , 2009, Acta tropica.

[6]  B. R. Laurence,et al.  An oviposition attractant pheromone in culex-quinquefasciatus say (diptera, culicidae) , 1985 .

[7]  R. Vogt,et al.  Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. , 2005, Insect biochemistry and molecular biology.

[8]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[9]  Leslie B. Vosshall,et al.  Chemotaxis Behavior Mediated by Single Larval Olfactory Neurons in Drosophila , 2005, Current Biology.

[10]  Ping Wang,et al.  Odorant Receptor Polymorphisms and Natural Variation in Olfactory Behavior in Drosophila melanogaster , 2010, Genetics.

[11]  A. Chess,et al.  Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. , 1999, Genomics.

[12]  A. Cornel,et al.  Identification and Cloning of a Female Antenna-Specific Odorant-Binding Protein in the Mosquito Culex quinquefasciatus , 2002, Journal of Chemical Ecology.

[13]  Kei Ito,et al.  Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae. , 2010, Learning & memory.

[14]  Thierry Emonet,et al.  Temporal coding of odor mixtures in an olfactory receptor neuron , 2011, Proceedings of the National Academy of Sciences.

[15]  A. Chess,et al.  Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe , 2000, Nature Neuroscience.

[16]  Aidan Kiely,et al.  Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. , 2008, Insect biochemistry and molecular biology.

[17]  W. Xu,et al.  Reverse and Conventional Chemical Ecology Approaches for the Development of Oviposition Attractants for Culex Mosquitoes , 2008, PloS one.

[18]  P. Pelosi,et al.  Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. , 2008, Biochemical and biophysical research communications.

[19]  V. Jayaraman,et al.  Intensity versus Identity Coding in an Olfactory System , 2003, Neuron.

[20]  J. Carlson,et al.  Candidate taste receptors in Drosophila. , 2000, Science.

[21]  L. Lane,et al.  CONTROL OF TSETSE FLIES ( DIPTERA : GLOSSINIDAE ) WITH THE AID OF ATTRACTANTS , 2004 .

[22]  Jing-Jiang Zhou,et al.  Identification and expression of odorant-binding proteins of the malaria-carrying mosquitoes Anopheles gambiae and Anopheles arabiensis. , 2005, Archives of insect biochemistry and physiology.

[23]  R T Cardé,et al.  Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3‐D flight analysis in a wind tunnel , 2011, Medical and veterinary entomology.

[24]  P. Xu,et al.  Drosophila OBP LUSH Is Required for Activity of Pheromone-Sensitive Neurons , 2005, Neuron.

[25]  David J. Anderson,et al.  Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila , 2009, Nature.

[26]  Richard Axel,et al.  A dimorphic pheromone circuit in Drosophila from sensory input to descending output , 2010, Nature.

[27]  Zainulabeuddin Syed,et al.  Maxillary palps are broad spectrum odorant detectors in Culex quinquefasciatus. , 2007, Chemical senses.

[28]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[29]  John R. Carlson,et al.  The Molecular Basis of Odor Coding in the Drosophila Larva , 2005, Neuron.

[30]  Z. Mainen,et al.  Early events in olfactory processing. , 2006, Annual review of neuroscience.

[31]  John R Carlson,et al.  The Molecular Basis of Odor Coding in the Drosophila Antenna , 2004, Cell.

[32]  Rachel I. Wilson,et al.  Olfactory processing and behavior downstream from highly selective receptor neurons , 2007, Nature Neuroscience.

[33]  J. Millar,et al.  Electroantennogram and oviposition bioassay responses of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae) to chemicals in odors from Bermuda grass infusions. , 1999, Journal of medical entomology.

[34]  David J. Anderson,et al.  A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila , 2004, Nature.

[35]  P Reiter,et al.  Enhancement of the CDC ovitrap with hay infusions for daily monitoring of Aedes aegypti populations. , 1991, Journal of the American Mosquito Control Association.

[36]  Jeffrey A. Riffell,et al.  Characterization and Coding of Behaviorally Significant Odor Mixtures , 2009, Current Biology.

[37]  L. Field,et al.  Identification of odorant‐binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses , 2008, Insect molecular biology.

[38]  J. Carlson,et al.  Targeted Mutation of a Drosophila Odor Receptor Defines Receptor Requirement in a Novel Class of Sensillum , 2003, The Journal of Neuroscience.

[39]  Andrew M Dacks,et al.  Serotonin Modulates Olfactory Processing in the Antennal Lobe of Drosophila , 2009, Journal of neurogenetics.

[40]  Kei Ito,et al.  Integration of Chemosensory Pathways in the Drosophila Second-Order Olfactory Centers , 2004, Current Biology.

[41]  Dean P. Smith,et al.  Activation of Pheromone-Sensitive Neurons Is Mediated by Conformational Activation of Pheromone-Binding Protein , 2008, Cell.

[42]  Kazushige Touhara,et al.  Insect Sex-Pheromone Signals Mediated by Specific Combinations of Olfactory Receptors , 2005, Science.

[43]  Leslie B. Vosshall,et al.  Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction , 2004, Neuron.

[44]  D. Kimbrell,et al.  Pheromone reception in fruit flies expressing a moth's odorant receptor , 2006, Proceedings of the National Academy of Sciences.

[45]  Zainulabeuddin Syed,et al.  Mosquitoes smell and avoid the insect repellent DEET , 2008, Proceedings of the National Academy of Sciences.

[46]  David S Ronderos,et al.  Activation of the T1 Neuronal Circuit is Necessary and Sufficient to Induce Sexually Dimorphic Mating Behavior in Drosophila melanogaster , 2010, The Journal of Neuroscience.

[47]  W. Leal,et al.  Genome Analysis and Expression Patterns of Odorant-Binding Proteins from the Southern House Mosquito Culex pipiens quinquefasciatus , 2009, PloS one.

[48]  G. Laurent,et al.  Who reads temporal information contained across synchronized and oscillatory spike trains? , 1998, Nature.

[49]  J. Carlson,et al.  Role of G-Proteins in Odor-Sensing and CO2-Sensing Neurons in Drosophila , 2010, The Journal of Neuroscience.

[50]  V. Jayaraman,et al.  Encoding and Decoding of Overlapping Odor Sequences , 2006, Neuron.

[51]  R. Vogt,et al.  Snmp-1, a Novel Membrane Protein of Olfactory Neurons of the Silk Moth Antheraea polyphemus with Homology to the CD36 Family of Membrane Proteins* , 1997, The Journal of Biological Chemistry.

[52]  Taufika Islam Williams,et al.  The Soluble Proteome of the Drosophila Antenna , 2009, Chemical senses.

[53]  W. Takken,et al.  3-D flight behaviour of the malaria mosquito Anopheles gambiae s.s. inside an odour plume , 2008 .

[54]  M. Welsh,et al.  Drosophila hygrosensation requires the TRP channels water witch and nanchung , 2007, Nature.

[55]  John R. Carlson,et al.  Odorant response of individual sensilla on theDrosophila antenna , 1997, Invertebrate Neuroscience.

[56]  J. R. Carlson,et al.  Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  John R. Carlson,et al.  Coding of Odors by a Receptor Repertoire , 2006, Cell.

[58]  R. O'connell,et al.  Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide , 1995, Journal of Comparative Physiology A.

[59]  John R. Carlson,et al.  Translation of Sensory Input into Behavioral Output via an Olfactory System , 2008, Neuron.

[60]  Vikas Bhandawat,et al.  Excitatory Interactions between Olfactory Processing Channels in the Drosophila Antennal Lobe , 2007, Neuron.

[61]  T. Ha,et al.  SNMP is a signaling component required for pheromone sensitivity in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[62]  G. Hasan,et al.  Reduced Odor Responses from Antennal Neurons of Gqα, Phospholipase Cβ, and rdgA Mutants in Drosophila Support a Role for a Phospholipid Intermediate in Insect Olfactory Transduction , 2008, The Journal of Neuroscience.

[63]  Baranidharan Raman,et al.  Temporally Diverse Firing Patterns in Olfactory Receptor Neurons Underlie Spatiotemporal Neural Codes for Odors , 2010, The Journal of Neuroscience.

[64]  W. Tabachnick,et al.  Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world , 2010, Journal of Experimental Biology.

[65]  M. Birkett,et al.  Laboratory and Field Responses of the Mosquito, Culex quinquefasciatus, to Plant-Derived Culex spp. Oviposition Pheromone and the Oviposition Cue Skatole , 2004, Journal of Chemical Ecology.

[66]  R. J. Pitts,et al.  A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S. Mclver Sensilla of Mosquitoes (Diptera: Culicidae) , 1982 .

[68]  J. Carlson,et al.  Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae , 2010, Proceedings of the National Academy of Sciences.

[69]  M. Klowden Endogenous regulation of the attraction of Aedes aegypti mosquitoes. , 1994, Journal of the American Mosquito Control Association.

[70]  Weltgesundheitsorganisation World malaria report , 2005 .

[71]  Dean P. Smith,et al.  A Pheromone Receptor Mediates 11-cis-Vaccenyl Acetate-Induced Responses in Drosophila , 2006, The Journal of Neuroscience.

[72]  W. Leal,et al.  An Odorant Receptor from the Southern House Mosquito Culex pipiens quinquefasciatus Sensitive to Oviposition Attractants , 2010, PloS one.

[73]  John R Carlson,et al.  Chemosensory Coding by Neurons in the Coeloconic Sensilla of the Drosophila Antenna , 2005, The Journal of Neuroscience.

[74]  Ping Wang,et al.  Natural Variation in Odorant Recognition Among Odorant-Binding Proteins in Drosophila melanogaster , 2010, Genetics.

[75]  W. Leal,et al.  Conformational Change in the Pheromone-binding Protein fromBombyx mori Induced by pH and by Interaction with Membranes* , 1999, The Journal of Biological Chemistry.

[76]  M. Rosbash,et al.  Members of a family of drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs , 1994, Neuron.

[77]  C Giovanni Galizia,et al.  Processing of Odor Mixtures in the Drosophila Antennal Lobe Reveals both Global Inhibition and Glomerulus-Specific Interactions , 2007, The Journal of Neuroscience.

[78]  Ann-Shyn Chiang,et al.  A Map of Olfactory Representation in the Drosophila Mushroom Body , 2007, Cell.

[79]  T. Baker,et al.  Odor Detection in Insects: Volatile Codes , 2008, Journal of Chemical Ecology.

[80]  Richard Benton,et al.  Functional Architecture of Olfactory Ionotropic Glutamate Receptors , 2011, Neuron.

[81]  Silke Sachse,et al.  Atypical Membrane Topology and Heteromeric Function of Drosophila Odorant Receptors In Vivo , 2006, PLoS biology.

[82]  W. Takken,et al.  Odor Coding in the Maxillary Palp of the Malaria Vector Mosquito Anopheles gambiae , 2007, Current Biology.

[83]  T. Sejnowski,et al.  Model of Transient Oscillatory Synchronization in the Locust Antennal Lobe , 2001, Neuron.

[84]  L. Vosshall,et al.  Sensing odorants and pheromones with chemosensory receptors. , 2009, Annual review of physiology.

[85]  Nicolas Y. Masse,et al.  Olfactory Information Processing in Drosophila , 2009, Current Biology.

[86]  J. Dickens,et al.  Characterization of an Enantioselective Odorant Receptor in the Yellow Fever Mosquito Aedes aegypti , 2009, PloS one.

[87]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[88]  G. Gisselmann,et al.  Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster , 2005, Nature Neuroscience.

[89]  L. Vosshall,et al.  Functional conservation of an insect odorant receptor gene across 250 million years of evolution , 2005, Current Biology.

[90]  E. Stone,et al.  Plasticity of the Chemoreceptor Repertoire in Drosophila melanogaster , 2009, PLoS genetics.

[91]  A. Kopp,et al.  Bombykol receptors in the silkworm moth and the fruit fly , 2010, Proceedings of the National Academy of Sciences.

[92]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[93]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[94]  Peter J. Clyne,et al.  Odor Coding in a Model Olfactory Organ: TheDrosophila Maxillary Palp , 1999, The Journal of Neuroscience.

[95]  Regine Heller,et al.  Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels , 2008, Nature.

[96]  Andrey Rzhetsky,et al.  A Spatial Map of Olfactory Receptor Expression in the Drosophila Antenna , 1999, Cell.

[97]  Michael H. Dickinson,et al.  Multi-camera real-time three-dimensional tracking of multiple flying animals , 2010, Journal of The Royal Society Interface.

[98]  M. Copland,et al.  Human sweat and 2‐oxopentanoic acid elicit a landing response from Anopheles gambiae , 2000, Medical and veterinary entomology.

[99]  H. Biessmann,et al.  The Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) Mediates Indole Recognition in the Antennae of Female Mosquitoes , 2010, PloS one.

[100]  Anandasankar Ray,et al.  Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants , 2009, Nature.

[101]  W. Takken,et al.  Olfactory regulation of mosquito-host interactions. , 2004, Insect biochemistry and molecular biology.

[102]  R. J. Pitts,et al.  Conservation of indole responsive odorant receptors in mosquitoes reveals an ancient olfactory trait. , 2011, Chemical senses.

[103]  L. Vosshall,et al.  Insect Odorant Receptors Are Molecular Targets of the Insect Repellent DEET , 2008, Science.

[104]  R. J. Pitts,et al.  Antennal sensilla of two female anopheline sibling species with differing host ranges , 2006, Malaria Journal.

[105]  P. Xu,et al.  Identification of a distinct family of genes encoding atypical odorant‐binding proteins in the malaria vector mosquito, Anopheles gambiae , 2003, Insect molecular biology.

[106]  Leslie B. Vosshall,et al.  Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila , 2009, Cell.

[107]  R. Benton,et al.  Acid sensing by the Drosophila olfactory system , 2010, Nature.

[108]  R. J. Pitts,et al.  Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. , 2004, Chemical senses.

[109]  Leslie B. Vosshall,et al.  Genetic and Functional Subdivision of the Drosophila Antennal Lobe , 2005, Current Biology.

[110]  M. Gillies.,et al.  A comparison of the range of attraction of animal baits and of carbon dioxide for some West African mosquitoes. , 1969, Bulletin of entomological research.

[111]  L. Zwiebel,et al.  Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae , 2006, Proceedings of the National Academy of Sciences.

[112]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[113]  G. Laurent,et al.  Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies , 1996, Science.

[114]  R. J. Pitts,et al.  A cluster of candidate odorant receptors from the malaria vector mosquito, Anopheles gambiae. , 2002, Chemical senses.

[115]  Xianzhong Xu,et al.  1H, 15N, and 13C chemical shift assignments of the mosquito odorant binding protein-1 (CquiOBP1) bound to the mosquito oviposition pheromone , 2009, Biomolecular NMR assignments.

[116]  John R. Carlson,et al.  A Novel Family of Divergent Seven-Transmembrane Proteins Candidate Odorant Receptors in Drosophila , 1999, Neuron.

[117]  J. Hildebrand,et al.  Responses of a population of antennal olfactory receptor cells in the female moth Manduca sexta to plant-associated volatile organic compounds , 2001, Journal of Comparative Physiology A.

[118]  John R. Carlson,et al.  Odor Coding in the Drosophila Antenna , 2001, Neuron.

[119]  Kei Ito,et al.  Odor-Evoked Neural Oscillations in Drosophila Are Mediated by Widely Branching Interneurons , 2009, The Journal of Neuroscience.

[120]  A. Cornel,et al.  Knockdown of a Mosquito Odorant-binding Protein Involved in the Sensitive Detection of Oviposition Attractants , 2010, Journal of Chemical Ecology.

[121]  J. Hildebrand,et al.  Neuromodulation by 5-hydroxytryptamine in the antennal lobe of the sphinx moth Manduca sexta. , 1995, The Journal of experimental biology.

[122]  L. Zwiebel,et al.  A functional role for Anopheles gambiae Arrestin1 in olfactory signal transduction. , 2008, Journal of insect physiology.

[123]  R. J. Pitts,et al.  Distinct Olfactory Signaling Mechanisms in the Malaria Vector Mosquito Anopheles gambiae , 2010, PLoS biology.

[124]  B. Hansson,et al.  The Antennal Lobe of Orthoptera – Anatomy and Evolution , 2001, Brain, Behavior and Evolution.

[125]  L. Vosshall,et al.  An essential role for a CD36-related receptor in pheromone detection in Drosophila , 2007, Nature.

[126]  John R. Carlson,et al.  Receptors and Neurons for Fly Odors in Drosophila , 2007, Current Biology.

[127]  Barry J. Dickson,et al.  The Drosophila pheromone cVA activates a sexually dimorphic neural circuit , 2008, Nature.

[128]  W. Leal,et al.  Peripheral Coding of Sex Pheromone and a Behavioral Antagonist in the Japanese Beetle, Popillia japonica , 2002, Journal of Chemical Ecology.

[129]  R. J. Pitts,et al.  The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae , 2008, Proceedings of the National Academy of Sciences.

[130]  John R. Carlson,et al.  Integrating the Molecular and Cellular Basis of Odor Coding in the Drosophila Antenna , 2003, Neuron.

[131]  J. Sanes,et al.  Structure and development of antennae in a moth, Manduca sexta. , 1976, Developmental biology.

[132]  Hokto Kazama,et al.  Homeostatic Matching and Nonlinear Amplification at Identified Central Synapses , 2008, Neuron.

[133]  John G. Hildebrand,et al.  Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the mothManduca sexta , 1987, Journal of Comparative Physiology A.

[134]  Hugh M Robertson,et al.  G Protein-Coupled Receptors in Anopheles gambiae , 2002, Science.

[135]  T. Baker,et al.  Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea , 2002, Journal of Comparative Physiology A.

[136]  Gilles Laurent,et al.  Testing Odor Response Stereotypy in the Drosophila Mushroom Body , 2008, Neuron.

[137]  T. Mackay,et al.  Natural Variation, Functional Pleiotropy and Transcriptional Contexts of Odorant Binding Protein Genes in Drosophila melanogaster , 2010, Genetics.

[138]  H. Robertson,et al.  Evolution of the Gene Lineage Encoding the Carbon Dioxide Receptor in Insects , 2009, Journal of insect science.

[139]  J. Hildebrand,et al.  Organization and synaptic ultrastructure of glomeruli in the antennal lobes of the moth Manduca sexta: a study using thin sections and freeze-fracture , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[140]  J. Hildebrand,et al.  Pheromone receptor cells in the male moth Manduca sexta , 1989 .

[141]  Leslie B. Vosshall,et al.  Two chemosensory receptors together mediate carbon dioxide detection in Drosophila , 2007, Nature.

[142]  Gregory S.X.E. Jefferis,et al.  Glomerular Maps without Cellular Redundancy at Successive Levels of the Drosophila Larval Olfactory Circuit , 2005, Current Biology.

[143]  W. Leal,et al.  Odorant Receptor from the Southern House Mosquito Narrowly Tuned to the Oviposition Attractant Skatole , 2010, Journal of Chemical Ecology.

[144]  W. Takken,et al.  Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). , 2005, Chemical senses.

[145]  Richard Axel,et al.  An Olfactory Sensory Map in the Fly Brain , 2000, Cell.

[146]  Bart G. J. Knols,et al.  Behavioural and electrophysiological responses of the female malaria mosquito Anopheles gambiae (Diptera: Culicidae) to Limburger cheese volatiles. , 1997 .

[147]  P. Pelosi,et al.  Soluble proteins in insect chemical communication , 2006, Cellular and Molecular Life Sciences CMLS.

[148]  J. V. van Loon,et al.  Sensitivities of antennal olfactory neurons of the malaria mosquito, Anopheles gambiae, to carboxylic acids. , 1999, Journal of insect physiology.

[149]  C. Denotter,et al.  SINGLE SENSILLUM RESPONSES IN MALE MOTH ADOXOPHYES-ORANA (FVR) TO FEMALE SEX-PHEROMONE COMPONENTS AND THEIR GEOMETRICAL ISOMERS , 1977 .

[150]  L. Zwiebel,et al.  Identification and characterization of an odorant receptor from the West Nile virus mosquito, Culex quinquefasciatus. , 2006, Insect biochemistry and molecular biology.

[151]  G. Laurent,et al.  Temporal Representations of Odors in an Olfactory Network , 1996, The Journal of Neuroscience.

[152]  W. Xu,et al.  Structure of an Odorant-Binding Protein from the Mosquito Aedes aegypti Suggests a Binding Pocket Covered by a pH-Sensitive “Lid” , 2009, PloS one.

[153]  B. Hansson,et al.  Characterization of antennal trichoid sensilla from female southern house mosquito, Culex quinquefasciatus Say. , 2008, Chemical senses.

[154]  Leslie B. Vosshall,et al.  Insect olfactory receptors are heteromeric ligand-gated ion channels , 2008, Nature.

[155]  L. Zwiebel,et al.  Gα encoding gene family of the malaria vector mosquito Anopheles gambiae: Expression analysis and immunolocalization of AGαq and AGαo in female antennae , 2006, The Journal of comparative neurology.

[156]  A. Cornel,et al.  Intriguing olfactory proteins from the yellow fever mosquito, Aedes aegypti , 2004, Naturwissenschaften.

[157]  Barry J. Dickson,et al.  Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System , 2005, Current Biology.

[158]  R. Vogt,et al.  The insect SNMP gene family. , 2009, Insect biochemistry and molecular biology.

[159]  R. J. Pitts,et al.  Molecular characterization of the Aedes aegypti odorant receptor gene family , 2007, Insect molecular biology.

[160]  David J. Anderson,et al.  Light Activation of an Innate Olfactory Avoidance Response in Drosophila , 2007, Current Biology.

[161]  J. Carlson,et al.  Insects as chemosensors of humans and crops , 2006, Nature.

[162]  H. Biessmann,et al.  Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria‐transmitting mosquito, Anopheles gambiae , 2002, Insect molecular biology.

[163]  P Luginbühl,et al.  NMR structure reveals intramolecular regulation mechanism for pheromone binding and release , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[164]  W. Takken,et al.  Olfactory Coding in Antennal Neurons of the Malaria Mosquito, Anopheles gambiae. , 2006, Chemical senses.

[165]  E. Kramer,et al.  Attractivity of pheromone surpassed by time-patterned application of two nonpheromone compounds , 2005, Journal of Insect Behavior.

[166]  E. Grosse-Wilde,et al.  A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. , 2006, Chemical senses.

[167]  Shawn R. Olsen,et al.  Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations , 2007, Nature Neuroscience.

[168]  R. Steinbrecht,et al.  Atlas of olfactory organs of Drosophila melanogaster , 1999 .

[169]  L. Riddiford,et al.  Pheromone binding and inactivation by moth antennae , 1981, Nature.

[170]  John R. Carlson,et al.  The molecular basis of CO2 reception in Drosophila , 2007, Proceedings of the National Academy of Sciences.

[171]  T. Gibson,et al.  Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction , 2010, PLoS genetics.

[172]  W. Takken,et al.  Odor-mediated behavior of Afrotropical malaria mosquitoes. , 1999, Annual review of entomology.

[173]  Zainulabeuddin Syed,et al.  Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant , 2009, Proceedings of the National Academy of Sciences.

[174]  R. Steinbrecht Structure and function of insect olfactory sensilla. , 2007, Ciba Foundation symposium.

[175]  E. Hallem,et al.  Olfaction: Mosquito receptor for human-sweat odorant , 2004, Nature.

[176]  John R. Carlson,et al.  Coexpression of Two Functional Odor Receptors in One Neuron , 2005, Neuron.

[177]  J. Clardy,et al.  Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone , 2010, Proceedings of the National Academy of Sciences.

[178]  J. Hildebrand,et al.  Olfactory interneurons in the moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.