First-principles design of next-generation nuclear fuels

The behavior of nuclear fuel in a reactor is a complex phenomenon that is influenced by a large number of materials properties, which include thermomechanical strength, chemical stability, microstructure, and defects. As a consequence, a comprehensive understanding of the fuel material behavior presents a significant modeling challenge, which must be mastered to improve the efficiency and reliability of current nuclear reactors. It is also essential to the development of advanced fuel materials for next-generation reactors. Over the last two decades, the use of density functional theory (DFT) has greatly contributed to our understanding by providing profound information on nuclear fuel materials, ranging from fundamental properties of f-electron systems to thermomechanical materials properties. This article briefly summarizes the main achievements of this first-principles computational methodology as it applies to nuclear fuel materials. Also, the current status of first-principles modeling is discussed, considering existing limitations and drawbacks such as size limitation and the added complexity associated with high temperature analysis. Finally, the future role of DFT modeling in the nuclear fuels industry is put into perspective.

[1]  F. Zhou,et al.  Crystal field and magnetic structure of UO 2 , 2010, 1006.3988.

[2]  B. Ao,et al.  Ab initio interionic potentials for UN by multiple lattice inversion , 2010 .

[3]  T. Mattsson,et al.  Shock compression of a fifth period element: liquid xenon to 840 GPa. , 2010, Physical review letters.

[4]  M. Freyss First-principles study of uranium carbide: Accommodation of point defects and of helium, xenon, and oxygen impurities , 2010 .

[5]  G. M. Stocks,et al.  Electronic structure and ionicity of actinide oxides from first principles , 2009, 0908.1806.

[6]  R. Armiento,et al.  Quantifying the anomalous self-diffusion in molybdenum with first-principles simulations , 2009 .

[7]  M. Verwerft,et al.  Molecular dynamics simulation of helium and oxygen diffusion in UO2±x , 2009 .

[8]  Bernard Amadon,et al.  DFT+U calculations of the ground state and metastable states of uranium dioxide , 2009 .

[9]  B. Dorado,et al.  GGA+U study of the incorporation of iodine in uranium dioxide , 2009 .

[10]  O. Eriksson,et al.  Theory of He trapping, diffusion, and clustering in UO2 , 2009 .

[11]  Olle Eriksson,et al.  First-principles theory for helium and xenon diffusion in uranium dioxide , 2009 .

[12]  Peter M. Oppeneer,et al.  Defect energetics and Xe diffusion in UO2 and ThO2 , 2009 .

[13]  R. Atta-Fynn,et al.  Does hybrid density functional theory predict a non-magnetic ground state for δ-Pu? , 2009, 0902.3240.

[14]  James S. Tulenko,et al.  Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations , 2009 .

[15]  B. Uberuaga,et al.  Cooperativity among defect sites in AO 2+x and A 4 O 9 (A=U,Np,Pu) : Density functional calculations , 2009 .

[16]  Lyndon Edwards,et al.  Greater tolerance for nuclear materials. , 2008, Nature materials.

[17]  Kwangheon Park,et al.  Atomic diffusion mechanism of Xe in UO2 , 2008 .

[18]  S. Yamanaka,et al.  Thermal and mechanical properties of uranium nitride prepared by SPS technique , 2008 .

[19]  F. Jollet,et al.  γandβcerium:LDA+Ucalculations of ground-state parameters , 2008 .

[20]  T. Tyliszczak,et al.  New data on the structure of uranium monocarbide , 2008 .

[21]  S. Savrasov,et al.  Origin of low thermal conductivity in nuclear fuels. , 2008, Physical review letters.

[22]  G. Scuseria,et al.  Covalency in the actinide dioxides: Systematic study of the electronic properties using screened hybrid density functional theory , 2007 .

[23]  A. Pasturel,et al.  Correlation effects and energetics of point defects in uranium dioxide: a first principle investigation , 2007 .

[24]  Hanchul Kim,et al.  Electronic structure of UO2 from the density functional theory with on-site coulomb repulsion , 2007 .

[25]  Eugene A. Kotomin,et al.  Atomic scale DFT simulations of point defects in uranium nitride , 2007 .

[26]  H. Ryu,et al.  Diffusion coefficient of Xe-133 in a SIMFUEL with a low burnup , 2007 .

[27]  Yasunori Kaneta,et al.  First-Principles Calculation of Point Defects in Uranium Dioxide , 2006 .

[28]  Julian D. Gale,et al.  Quantum mechanical vs. empirical potential modeling of uranium dioxide (UO2) surfaces: (111), (110), and (100) , 2006 .

[29]  Michel Freyss,et al.  Ab initio modeling of the behavior of helium and xenon in actinide dioxide nuclear fuels , 2006 .

[30]  C. Woodward,et al.  The Chemistry of Deformation: How Solutes Soften Pure Metals , 2005, Science.

[31]  Michel Freyss,et al.  Point defects in uranium dioxide: Ab initio pseudopotential approach in the generalized gradient approximation , 2005 .

[32]  M. Huda,et al.  Molecular hydrogen adsorption and dissociation on the plutonium (111) surface , 2005 .

[33]  Paweł T. Jochym,et al.  First-principles study of phonon modes in PuCoGa5 superconductor , 2005 .

[34]  Heemoon Kim,et al.  AB INITIO CALCUATIONS OF STRONGLY CORRELATED ELECTRONS , 2005 .

[35]  K. Schwarz,et al.  Magnetic structure and electric-field gradients of uranium dioxide: An ab initio study , 2004 .

[36]  Z. Szotek,et al.  First-Principles Calculations of PuO2±x , 2003, Science.

[37]  G. Kotliar,et al.  Calculated Phonon Spectra of Plutonium at High Temperatures , 2003, Science.

[38]  Richard L. Martin,et al.  Hybrid density-functional theory and the insulating gap of UO2. , 2002, Physical review letters.

[39]  Kazuhiro Yamada,et al.  Evaluation of thermal properties of uranium dioxide by molecular dynamics , 2000 .

[40]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[41]  Adrian P. Sutton,et al.  Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide , 1997 .

[42]  R. P. Agarwala Diffusion processes in nuclear materials , 1992 .

[43]  Hansjoachim Matzke,et al.  Atomic transport properties in UO2 and mixed oxides (U, Pu)O2 , 1987 .

[44]  Y. Baer,et al.  Electronic structure and Coulomb correlation energy in UO2 single crystal , 1980 .

[45]  R. H. Petrucci,et al.  General Chemistry: Principles and Modern Applications , 1972 .

[46]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .