Measuring Electron Correlation: The Impact of Symmetry and Orbital Transformations

In this perspective, the various measures of electron correlation used in wave function theory, density functional theory and quantum information theory are briefly reviewed. We then focus on a more traditional metric based on dominant weights in the full configuration solution and discuss its behavior with respect to the choice of the N-electron and the one-electron basis. The impact of symmetry is discussed, and we emphasize that the distinction among determinants, configuration state functions and configurations as reference functions is useful because the latter incorporate spin-coupling into the reference and should thus reduce the complexity of the wave function expansion. The corresponding notions of single determinant, single spin-coupling and single configuration wave functions are discussed and the effect of orbital rotations on the multireference character is reviewed by analyzing a simple model system. In molecular systems, the extent of correlation effects should be limited by finite system size and in most cases the appropriate choices of one-electron and N-electron bases should be able to incorporate these into a low-complexity reference function, often a single configurational one.

[1]  D. Kats,et al.  Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach , 2023, Journal of chemical theory and computation.

[2]  M. Ruggenthaler,et al.  The structure of the density-potential mapping. Part I: Standard density-functional theory , 2022, 2211.16627.

[3]  D. Lacroix,et al.  Symmetry breaking/symmetry preserving circuits and symmetry restoration on quantum computers , 2022, The European Physical Journal A.

[4]  Ruslan N. Tazhigulov,et al.  Simulating Models of Challenging Correlated Molecules and Materials on the Sycamore Quantum Processor , 2022, PRX Quantum.

[5]  C. Cramer,et al.  Localized Active Space-State Interaction: a Multireference Method for Chemical Insight. , 2022, Journal of chemical theory and computation.

[6]  Róbert Izsák Second quantisation for unrestricted references: formalism and quasi-spin-adaptation of excitation and spin-flip operators , 2022, Molecular Physics.

[7]  Edward F. Valeev,et al.  Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry , 2022, Nature Communications.

[8]  C. Schilling,et al.  Quantifying Electron Entanglement Faithfully , 2022, 2207.03377.

[9]  S. Knecht,et al.  Quantum correlations in molecules: from quantum resourcing to chemical bonding , 2022, Quantum Science and Technology.

[10]  Francesco A. Evangelista Automatic derivation of many-body theories based on general Fermi vacua. , 2022, The Journal of chemical physics.

[11]  Ö. Legeza,et al.  Compressing multireference character of wave functions via fermionic mode optimization , 2022, Journal of Mathematical Chemistry.

[12]  M. Motta,et al.  Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers , 2022, Symmetry.

[13]  D. Mazziotti,et al.  Density Functional Theory Transformed into a One-Electron Reduced-Density-Matrix Functional Theory for the Capture of Static Correlation. , 2022, The journal of physical chemistry letters.

[14]  A. Alavi,et al.  Combined unitary and symmetric group approach applied to low-dimensional Heisenberg spin systems , 2021, Physical Review B.

[15]  S. Kais,et al.  Geometrical picture of the electron-electron correlation at the large-D limit. , 2021, Physical chemistry chemical physics : PCCP.

[16]  C. Dreyer,et al.  Quantum embedding methods for correlated excited states of point defects: Case studies and challenges , 2021, Physical Review B.

[17]  S. Knecht,et al.  Quantum Correlations in Molecules: A Quantum Information Toolbox for Chemists , 2022 .

[18]  Jan M. L. Martin Electron Correlation: Nature's Weird and Wonderful Chemical Glue , 2021, Israel Journal of Chemistry.

[19]  Michael Roemelt,et al.  Modern multireference methods and their application in transition metal chemistry. , 2021, Physical chemistry chemical physics : PCCP.

[20]  A. Alavi,et al.  Spin-Pure Stochastic-CASSCF via GUGA-FCIQMC Applied to Iron–Sulfur Clusters , 2021, Journal of chemical theory and computation.

[21]  G. LiManni Modeling Magnetic Interactions in High-Valent Trinuclear [Mn(IV)3O4]^4+ Complexes Through Highly Compressed Multi-Configurational Wave Functions , 2021 .

[22]  D. Zgid,et al.  Interpretation of multiple solutions in fully iterative GF2 and GW schemes using local analysis of two-particle density matrices. , 2021, The Journal of chemical physics.

[23]  S. Iskakov,et al.  Evaluation of two-particle properties within finite-temperature self-consistent one-particle Green's function methods: Theory and application to GW and GF2. , 2021, The Journal of chemical physics.

[24]  F. Neese,et al.  Comparison of many‐particle representations for selected‐CI I: A tree based approach , 2021, J. Comput. Chem..

[25]  F. Neese,et al.  Experimental and Theoretical Evidence for an Unusual Almost Triply Degenerate Electronic Ground State of Ferrous Tetraphenylporphyrin. , 2021, Inorganic chemistry.

[26]  Joonho Lee,et al.  Revealing the nature of electron correlation in transition metal complexes with symmetry breaking and chemical intuition. , 2021, The Journal of chemical physics.

[27]  A. Alavi,et al.  Resolution of Low-Energy States in Spin-Exchange Transition-Metal Clusters: Case Study of Singlet States in [Fe(III)4S4] Cubanes , 2020, The journal of physical chemistry. A.

[28]  J. Perdew,et al.  Interpretations of ground-state symmetry breaking and strong correlation in wavefunction and density functional theories , 2020, Proceedings of the National Academy of Sciences.

[29]  M. Csirik,et al.  Coupled-Cluster Theory Revisited , 2021, ArXiv.

[30]  J. J. Eriksen The Shape of Full Configuration Interaction to Come. , 2020, The journal of physical chemistry letters.

[31]  F. Benatti,et al.  Entanglement in indistinguishable particle systems , 2020, Physics Reports.

[32]  Y. Kuramoto Quantum Many-Body Physics , 2020 .

[33]  A. Krylov,et al.  Spin-flip methods in quantum chemistry. , 2020, Physical chemistry chemical physics : PCCP.

[34]  E. M. Stoudenmire,et al.  Ground-State Properties of the Hydrogen Chain: Dimerization, Insulator-to-Metal Transition, and Magnetic Phases , 2019, 1911.01618.

[35]  A. Alavi,et al.  Compression of Spin-Adapted Multiconfigurational Wave Functions in Exchange-Coupled Polynuclear Spin Systems , 2019, Journal of chemical theory and computation.

[36]  K. Burke,et al.  Recent Developments in Density Functional Approximations , 2020, Handbook of Materials Modeling.

[37]  Róbert Izsák Single‐reference coupled cluster methods for computing excitation energies in large molecules: The efficiency and accuracy of approximations , 2020, WIREs Computational Molecular Science.

[38]  Daniel S. Levine,et al.  What levels of coupled cluster theory are appropriate for transition metal systems? A study using near exact quantum chemical values for 3d transition metal binary compounds. , 2019, Journal of chemical theory and computation.

[39]  A. Alavi,et al.  Efficient formulation of full configuration interaction quantum Monte Carlo in a spin eigenbasis via the graphical unitary group approach. , 2019, The Journal of chemical physics.

[40]  Magnetic Interactions , 2019, Foundations of Solid State Physics.

[41]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[42]  G. Chan,et al.  Electronic landscape of the P-cluster of nitrogenase as revealed through many-electron quantum wavefunction simulations , 2018, Nature Chemistry.

[43]  J. J. Eriksen,et al.  Many-Body Expanded Full Configuration Interaction. II. Strongly Correlated Regime. , 2018, Journal of chemical theory and computation.

[44]  Simen Kvaal,et al.  Analysis of the Tailored Coupled-Cluster Method in Quantum Chemistry , 2018, SIAM J. Numer. Anal..

[45]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.

[46]  Daniel S. Levine,et al.  Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices , 2018, 1809.05523.

[47]  J. J. Eriksen,et al.  Many-Body Expanded Full Configuration Interaction. I. Weakly Correlated Regime. , 2018, Journal of chemical theory and computation.

[48]  F. Malone,et al.  Auxiliary-field quantum Monte Carlo calculations of the structural properties of nickel oxide. , 2018, The Journal of chemical physics.

[49]  L. Reining The GW approximation: content, successes and limitations , 2018 .

[50]  Andreas V. Copan,et al.  Linear-Response Density Cumulant Theory for Excited Electronic States. , 2018, Journal of chemical theory and computation.

[51]  Ali Alavi,et al.  The Intricate Case of Tetramethyleneethane: A Full Configuration Interaction Quantum Monte Carlo Benchmark and Multireference Coupled Cluster Studies. , 2018, Journal of chemical theory and computation.

[52]  Denis Jacquemin,et al.  The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges. , 2018, Chemical Society reviews.

[53]  Adam A Holmes,et al.  Cheap and Near Exact CASSCF with Large Active Spaces. , 2017, Journal of chemical theory and computation.

[54]  Mario Piris,et al.  Global Method for Electron Correlation. , 2017, Physical review letters.

[55]  S. Pal Many-Electron Theory , 2017 .

[56]  Eloy Ramos‐Cordoba,et al.  Local Descriptors of Dynamic and Nondynamic Correlation. , 2017, Journal of chemical theory and computation.

[57]  David M. Ceperley,et al.  Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods , 2017, 1705.01608.

[58]  Carlos L Benavides-Riveros,et al.  Towards a formal definition of static and dynamic electronic correlations. , 2017, Physical chemistry chemical physics : PCCP.

[59]  M. Marques,et al.  Relating correlation measures: The importance of the energy gap , 2017, 1702.08422.

[60]  Benjamin G. Janesko Strong correlation in surface chemistry , 2017 .

[61]  Donald G Truhlar,et al.  Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems. , 2017, Accounts of chemical research.

[62]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[63]  Qiming Sun,et al.  Quantum Embedding Theories. , 2016, Accounts of chemical research.

[64]  E. Giner,et al.  The "Fermi hole" and the correlation introduced by the symmetrization or the anti-symmetrization of the wave function. , 2016, The Journal of chemical physics.

[65]  M. Reiher,et al.  Measuring multi-configurational character by orbital entanglement , 2016, 1609.02617.

[66]  P. Salvador,et al.  Separation of dynamic and nondynamic correlation. , 2016, Physical chemistry chemical physics : PCCP.

[67]  Markus Reiher,et al.  Automated Selection of Active Orbital Spaces. , 2016, Journal of chemical theory and computation.

[68]  Pierre-François Loos,et al.  The uniform electron gas , 2016, 1601.03544.

[69]  Katarzyna Pernal,et al.  Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT). , 2015, Topics in current chemistry.

[70]  Physik Book Handbuch Der Physikencyclopedia Of Physics Handbuch Der Physik , 2016 .

[71]  Nicolas Ferré,et al.  Density-Functional Methods for Excited States , 2016 .

[72]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[73]  Andreas Hansen,et al.  A practicable real-space measure and visualization of static electron-correlation effects. , 2015, Angewandte Chemie.

[74]  Alexander Yu Sokolov,et al.  Can density cumulant functional theory describe static correlation effects? , 2015, Journal of chemical theory and computation.

[75]  Thomas M Henderson,et al.  Can Single-Reference Coupled Cluster Theory Describe Static Correlation? , 2015, Journal of chemical theory and computation.

[76]  Garnet Kin-Lic Chan,et al.  The ab-initio density matrix renormalization group in practice. , 2015, The Journal of chemical physics.

[77]  Thomas M Henderson,et al.  Seniority-based coupled cluster theory. , 2014, The Journal of chemical physics.

[78]  Katharina Boguslawski,et al.  Orbital entanglement in quantum chemistry , 2014, 1409.8017.

[79]  M. Piris,et al.  Perspective on natural orbital functional theory , 2014 .

[80]  Á. Rubio,et al.  Local reduced-density-matrix-functional theory: Incorporating static correlation effects in Kohn-Sham equations , 2014, 1407.7128.

[81]  Dominika Zgid,et al.  Communication: the description of strong correlation within self-consistent Green's function second-order perturbation theory. , 2014, The Journal of chemical physics.

[82]  J. Mouesca Density functional theory-broken symmetry (DFT-BS) methodology applied to electronic and magnetic properties of bioinorganic prosthetic groups. , 2014, Methods in molecular biology.

[83]  D. Crittenden A hierarchy of static correlation models. , 2013, The journal of physical chemistry. A.

[84]  Frank Neese,et al.  Excited states of large open-shell molecules: an efficient, general, and spin-adapted approach based on a restricted open-shell ground state wave function. , 2013, The journal of physical chemistry. A.

[85]  Markus Reiher,et al.  Orbital Entanglement in Bond-Formation Processes. , 2013, Journal of chemical theory and computation.

[86]  Mario Piris,et al.  A Natural Orbital Functional Based on an Explicit Approach of the Two-Electron Cumulant , 2013 .

[87]  Frank Neese,et al.  An efficient and near linear scaling pair natural orbital based local coupled cluster method. , 2013, The Journal of chemical physics.

[88]  Jerzy Cioslowski,et al.  Many-Electron Densities and Reduced Density Matrices , 2012 .

[89]  Garnet Kin-Lic Chan,et al.  Low entanglement wavefunctions , 2012 .

[90]  M. Reiher,et al.  Entanglement Measures for Single- and Multireference Correlation Effects. , 2012, The journal of physical chemistry letters.

[91]  C J Umrigar,et al.  Semistochastic projector Monte Carlo method. , 2012, Physical review letters.

[92]  W. Kutzelnigg Separation of strong (bond-breaking) from weak (dynamical) correlation , 2012 .

[93]  Silke Biermann,et al.  The Electronic Structure of Solids , 2012 .

[94]  Nathan J. DeYonker,et al.  Multireference Character for 3d Transition-Metal-Containing Molecules. , 2012, Journal of chemical theory and computation.

[95]  Dmitry I. Lyakh,et al.  Multireference nature of chemistry: the coupled-cluster view. , 2012, Chemical reviews.

[96]  W. Lester,et al.  Quantum Monte Carlo and related approaches. , 2012, Chemical reviews.

[97]  D. Mazziotti Structure of fermionic density matrices: complete N-representability conditions. , 2011, Physical review letters.

[98]  N. S. Blunt,et al.  The sign problem and population dynamics in the full configuration interaction quantum Monte Carlo method. , 2011, The Journal of chemical physics.

[99]  M. E. Casida,et al.  Progress in time-dependent density-functional theory. , 2011, Annual review of physical chemistry.

[100]  Thomas M Henderson,et al.  Projected quasiparticle theory for molecular electronic structure. , 2011, The Journal of chemical physics.

[101]  F. Neese,et al.  Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The (Cu2O2)(2+) Core Revisited. , 2011, Journal of chemical theory and computation.

[102]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[103]  Peter M W Gill,et al.  The two faces of static correlation. , 2011, The Journal of chemical physics.

[104]  S. Shaik,et al.  Multireference and multiconfiguration ab initio methods in heme-related systems: what have we learned so far? , 2011, The journal of physical chemistry. B.

[105]  Ali Alavi,et al.  A study of electron affinities using the initiator approach to full configuration interaction quantum Monte Carlo. , 2011, The Journal of chemical physics.

[106]  Garnet Kin-Lic Chan,et al.  Dynamical mean-field theory from a quantum chemical perspective. , 2010, The Journal of chemical physics.

[107]  Nan Lin,et al.  Dynamical mean-field theory for quantum chemistry. , 2010, Physical review letters.

[108]  Jeremiah J. Wilke,et al.  Density cumulant functional theory: first implementation and benchmark results for the DCFT-06 model. , 2010, The Journal of chemical physics.

[109]  C. Sherrill,et al.  Assessing the performance of density functional theory for the electronic structure of metal-salens: the M06 suite of functionals and the d⁴-metals. , 2010, The journal of physical chemistry. A.

[110]  G. Scuseria,et al.  Communication: ROHF theory made simple. , 2010, The Journal of chemical physics.

[111]  V. Anisimov Electronic Structure of Strongly Correlated Materials , 2010 .

[112]  Ali Alavi,et al.  Communications: Survival of the fittest: accelerating convergence in full configuration-interaction quantum Monte Carlo. , 2010, The Journal of chemical physics.

[113]  塩崎 亨 Explicitly correlated coupled-cluster methods , 2010 .

[114]  Isaiah Shavitt,et al.  Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory , 2009 .

[115]  Ali Alavi,et al.  Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. , 2009, The Journal of chemical physics.

[116]  R. Mcweeny The nature of electron correlation in molecules , 2009 .

[117]  G. Scuseria,et al.  Strong correlations via constrained-pairing mean-field theory. , 2009, The Journal of chemical physics.

[118]  Adrienn Ruzsinszky,et al.  Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed. , 2009, Journal of chemical theory and computation.

[119]  F. Neese Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling , 2009 .

[120]  R. Wells Chapter 6 , 2009, Wide Neighborhoods.

[121]  David A Mazziotti,et al.  Active-space two-electron reduced-density-matrix method: complete active-space calculations without diagonalization of the N-electron Hamiltonian. , 2008, The Journal of chemical physics.

[122]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[123]  Weitao Yang,et al.  Fractional spins and static correlation error in density functional theory. , 2008, The Journal of chemical physics.

[124]  C. Sherrill,et al.  Assessing the performance of density functional theory for the electronic structure of metal-salens: the 3d(0)-metals. , 2008, Journal of Physical Chemistry A.

[125]  C. Sherrill,et al.  Assessing the performance of density functional theory for the electronic structure of metal-salens: the d2-metals. , 2008, The journal of physical chemistry. A.

[126]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[127]  F. Neese,et al.  Electronic structures of five-coordinate complexes of iron containing zero, one, or two pi-radical ligands: a broken-symmetry density functional theoretical study. , 2007, Chemistry.

[128]  Y. Omar,et al.  Introduction to entanglement and applications to the simulation of many-body quantum systems , 2007 .

[129]  V. Vieira,et al.  Strongly correlated systems, coherence and entanglement , 2007 .

[130]  Trygve Helgaker,et al.  Electron correlation: The many‐body problem at the heart of chemistry , 2007, J. Comput. Chem..

[131]  P. Löwdin Correlation Problem in Many‐Electron Quantum Mechanics I. Review of Different Approaches and Discussion of Some Current Ideas , 2007 .

[132]  K. Brueckner The Correlation Energy of a Non-Uniform Electron Gas , 2007 .

[133]  K. Peterson,et al.  Electron correlation methodology , 2007 .

[134]  Celestino Angeli,et al.  Bond electron pair: Its relevance and analysis from the quantum chemistry point of view , 2007, J. Comput. Chem..

[135]  John F. Stanton,et al.  Applications of Post‐Hartree—Fock Methods: A Tutorial , 2007 .

[136]  D. Mazziotti,et al.  The cumulant two-particle reduced density matrix as a measure of electron correlation and entanglement. , 2006, The Journal of chemical physics.

[137]  Werner Kutzelnigg,et al.  Density-cumulant functional theory. , 2006, The Journal of chemical physics.

[138]  W. Kutzelnigg Density Functional Theory (DFT) and ab-initio Quantum Chemistry (AIQC). Story of a difficult partnership , 2006 .

[139]  W. Kutzelnigg Density functional theory in terms of a Legendre transformation for beginners , 2006 .

[140]  B. Ruscic,et al.  W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. , 2006, The Journal of chemical physics.

[141]  F. Neese Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. , 2006, Journal of the American Chemical Society.

[142]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[143]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[144]  S. Kais,et al.  Entanglement as measure of electron–electron correlation in quantum chemistry calculations , 2005, quant-ph/0507148.

[145]  W. Kohn,et al.  Nearsightedness of electronic matter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Y. Omar Particle Statistics in Quantum Information Processing , 2004, quant-ph/0412213.

[147]  Frank Neese,et al.  Definition of corresponding orbitals and the diradical character in broken symmetry DFT calculations on spin coupled systems , 2004 .

[148]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[149]  J. Cioslowski,et al.  Approximate one-matrix functionals for the electron–electron repulsion energy from geminal theories , 2003 .

[150]  F. Neese,et al.  Analysis and interpretation of metal-radical coupling in a series of square planar nickel complexes: correlated Ab initio and density functional investigation of [Ni(L(ISQ))(2)] (L(ISQ)=3,5-di-tert-butyl-o-diiminobenzosemiquinonate(1-)). , 2003, Journal of the American Chemical Society.

[151]  Martin Head-Gordon,et al.  Characterizing unpaired electrons from the one-particle density matrix , 2003 .

[152]  F. Neese,et al.  Noninnocence of the ligand glyoxal-bis(2-mercaptoanil). The electronic structures of [Fe(gma)]2, [Fe(gma)(py)] x py, [Fe(gma)(CN)]1-/0, [Fe(gma)I], and [Fe(gma)(PR3)(n)] (n = 1, 2). Experimental and theoretical evidence for "excited state" coordination. , 2003, Journal of the American Chemical Society.

[153]  W. Kutzelnigg Theory of Electron Correlation , 2003 .

[154]  I. Mayer The Electron Correlation , 2003 .

[155]  Jacek Rychlewski,et al.  Explicitly correlated wave functions in chemistry and physics : theory and applications , 2003 .

[156]  A. Prykarpatsky,et al.  The Correlation Energy of Electron Gas at High Density , 2002 .

[157]  D. Cremer Density functional theory: coverage of dynamic and non-dynamic electron correlation effects , 2001 .

[158]  S. Fahy,et al.  Impact of Electron-Electron Cusp on Configuration Interaction Energies , 2001, cond-mat/0102536.

[159]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[160]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[161]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[162]  J. Cioslowski,et al.  Cumulant Expansions of Reduced Densities, Reduced Density Matrices, and Green’s Functions , 2000 .

[163]  W. Kutzelnigg,et al.  Electron Correlation at the Dawn of The 21st century , 2000 .

[164]  J. Perdew,et al.  Role of the exchange–correlation energy: Nature's glue , 2000 .

[165]  P. Knowles,et al.  Ab Initio Methods for Electron Correlation in Molecules , 2000 .

[166]  Debashis Mukherjee,et al.  Cumulant expansion of the reduced density matrices , 1999 .

[167]  Prof. Dr. Peter Fulde Solids with Weak and Strong Electron Correlations. , 1998, cond-mat/9803299.

[168]  H. Schlegel,et al.  A nonorthogonal CI treatment of symmetry breaking in sigma formyloxyl radical , 1998 .

[169]  S. Shaik,et al.  Spin-restricted density functional approach to the open-shell problem , 1998 .

[170]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[171]  Debashis Mukherjee,et al.  Normal order and extended Wick theorem for a multiconfiguration reference wave function , 1997 .

[172]  D. Gross,et al.  The role of symmetry in fundamental physics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[173]  N. H. March Electron Correlation in Molecules and Condensed Phases , 1996 .

[174]  A. Charlesby Electron correlations in molecules and solids , 1996 .

[175]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[176]  N. Handy,et al.  Dynamical and Nondynamical Correlation , 1996 .

[177]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[178]  P. Ziesche Correlation strength and information entropy , 1995 .

[179]  P. Löwdin The historical development of the electron correlation problem , 1995 .

[180]  N. H. March,et al.  Electron Correlation in the Solid State , 1995 .

[181]  E. Gey,et al.  Einführung in die Theoretische Chemie , 1995 .

[182]  C. Daul DENSITY FUNCTIONAL THEORY APPLIED TO THE EXCITED STATES OF COORDINATION COMPOUNDS , 1994 .

[183]  V. Korepin,et al.  Exactly solvable models of strongly correlated electrons , 1994, cond-mat/9408092.

[184]  N. H. March,et al.  Recent progress in the field of electron correlation , 1994 .

[185]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[186]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[187]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[188]  H. Schaefer,et al.  Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization , 1989 .

[189]  Rodney J. Bartlett,et al.  An open-shell spin-restricted coupled cluster method: application to ionization potentials in nitrogen , 1988 .

[190]  Michael C. Zerner,et al.  A generalized restricted open-shell Fock operator , 1987 .

[191]  Miroslav Urban,et al.  Electron Correlation in Molecules , 1987 .

[192]  A. D. McLean,et al.  Symmetry breaking in molecular calculations and the reliable prediction of equilibrium geometries. The formyloxyl radical as an example , 1985 .

[193]  A.M.K. Müller,et al.  Explicit approximate relation between reduced two- and one-particle density matrices , 1984 .

[194]  J. Arponen,et al.  Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems , 1983 .

[195]  E. Davidson,et al.  Symmetry breaking in polyatomic molecules: real and artifactual , 1983 .

[196]  Elliott H. Lieb,et al.  Density Functionals for Coulomb Systems , 1983 .

[197]  Louis Noodleman,et al.  Valence bond description of antiferromagnetic coupling in transition metal dimers , 1981 .

[198]  J. Hinze,et al.  The Unitary group for the evaluation of electronic energy matrix elements , 1981 .

[199]  Isaiah Shavitt,et al.  The Graphical Unitary Group Approach and Its Application to Direct Configuration Interaction Calculations , 1981 .

[200]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[201]  I. Mayer The Spin-Projected Extended Hartree-Fock Method , 1980 .

[202]  R. Pauncz Spin-Free Quantum Chemistry , 1979 .

[203]  Ruben Pauncz,et al.  Spin Eigenfunctions: Construction and Use , 1979 .

[204]  Arvi Rauk,et al.  On the calculation of multiplet energies by the hartree-fock-slater method , 1977 .

[205]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[206]  W. Goddard,et al.  The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree—Fock Wave Functions , 1977 .

[207]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[208]  T. Gilbert Hohenberg--Kohn theorem for nonlocal external potentials , 1975 .

[209]  John C. Slater,et al.  Solid-state and molecular theory : a scientific biography , 1975 .

[210]  Ernest R. Davidson,et al.  Spin-restricted open-shell self-consistent-field theory , 1973 .

[211]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[212]  Philip W. Anderson,et al.  More Is Different Broken symmetry and the nature of the hierarchical structure of science , 1972 .

[213]  R. Manne Brillouin's theorem in Roothaan's open-shell SCF method , 1972 .

[214]  P. Anderson More is different. , 1972, Science.

[215]  P. V. Herigonte Electron correlation in the seventies , 1972 .

[216]  S. Feneuille,et al.  THEORY OF COMPLEX SPECTRA. , 1971 .

[217]  J. Cizek,et al.  Stability Conditions for the Solutions of the Hartree-Fock Equations for Atomic and Molecular Systems. VI. Singlet-Type Instabilities and Charge-Density-Wave Hartree-Fock Solutions for Cyclic Polyenes , 1970 .

[218]  G. A. Baker,et al.  R-Matrix Expansion for the Ground-State Energy of a Many-Fermion System , 1970 .

[219]  J. Cizek,et al.  Stability Conditions for the Solutions of the Hartree–Fock Equations for Atomic and Molecular Systems. III. Rules for the Singlet Stability of Hartree–Fock Solutions of π‐Electronic Systems , 1970 .

[220]  William A. Goddard,et al.  Improved Quantum Theory of Many‐Electron Systems. V. The Spin‐Coupling Optimized GI Method , 1969 .

[221]  R. Lefebvre,et al.  Advances in Chemical Physics: LeFebvre/Advances , 1969 .

[222]  R. Lefebvre,et al.  Correlation effects in atoms and molecules , 1969 .

[223]  I. I. Ivanchik THEORY OF THE MANY-PARTICLE SYSTEMS. , 1968 .

[224]  W. Kutzelnigg,et al.  Correlation Coefficients for Electronic Wave Functions , 1968 .

[225]  J. Moffat Physical nature of the chemical bond , 1968 .

[226]  Josef Paldus,et al.  Stability Conditions for the Solutions of the Hartree—Fock Equations for Atomic and Molecular Systems. Application to the Pi‐Electron Model of Cyclic Polyenes , 1967 .

[227]  P. Argyres Virial Theorem for the Homogeneous Electron Gas , 1967 .

[228]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[229]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[230]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Atoms, Molecules and Their Interactions , 2007 .

[231]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[232]  John C. Slater,et al.  Quantum Theory of Molecules and Solids, Vol. 1: Electronic Structure of Molecules , 1964 .

[233]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[234]  A. J. Coleman THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .

[235]  G. W. Pratt,et al.  Discussion on The Hartree-Fock Approximation , 1963 .

[236]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Atoms and Molecules. III. Effect of Correlation on Orbitals , 1963 .

[237]  D. L. Dexter The Wave Mechanics of Electrons in Metals. , 1962 .

[238]  Leo P. Kadanoff,et al.  CONSERVATION LAWS AND CORRELATION FUNCTIONS , 1961 .

[239]  G. G. Hall,et al.  Single determinant wave functions , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[240]  O. Sǐnanoğlu,et al.  MANY-ELECTRON THEORY OF ATOMS AND MOLECULES. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[241]  M. Kotani,et al.  Quantum Mechanics of Electronic Structure of Simple Molecules , 1961 .

[242]  A. Maradudin,et al.  Zero‐Point Energy of an Electron Lattice , 1960 .

[243]  R. Mcweeny,et al.  The density matrix in many-electron quantum mechanics I. Generalized product functions. Factorization and physical interpretation of the density matrices , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[244]  F. Bopp Ableitung der Bindungsenergie vonN-Teilchen-Systemen aus 2-Teilchen-Dichtematrizen , 1959 .

[245]  N. H. March Kinetic and Potential Energies of an Electron Gas , 1958 .

[246]  David Pines,et al.  ELECTRON INTERACTION IN SOLIDS , 1956 .

[247]  J. Hubbard On the Interaction of Electrons in Metals , 1955 .

[248]  P. Löwdin Quantum Theory of Many-Particle Systems. III. Extension of the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects , 1955 .

[249]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[250]  David Pines,et al.  Electron Interaction in Metals , 1955 .

[251]  R. Kronig A Collective Description of Electron Interactions , 1952 .

[252]  David Pines,et al.  A Collective Description of Electron Interactions. I. Magnetic Interactions , 1951 .

[253]  C. A. Coulson,et al.  XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule , 1949 .

[254]  Eugene P. Wigner,et al.  Effects of the Electron Interaction on the Energy Levels of Electrons in Metals , 1938 .

[255]  J. C. Slater The Virial and Molecular Structure , 1933 .

[256]  E. Wigner,et al.  On the Constitution of Metallic Sodium. II , 1933 .

[257]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[258]  J. Lennard-jones,et al.  The electronic structure of some diatomic molecules , 1929 .

[259]  Robert S. Mulliken,et al.  The Assignment of Quantum Numbers for Electrons in Molecules. I , 1928 .

[260]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .