Zur olfaktorischen Navigation der Vögel

In contrast to earlier navigation hypotheses, based as they are on theoretical constructs deduced from our knowledge of the physical world, the notion of olfactory navigation is an unexpected outcome of empirical research. Referring to sceptical articles on the issue in this journal and elsewhere (e.g. Schmidt-Koenig 1985, 1987, 2001, Wiltschko 1996), and in order to fill a gap in a recent review on avian navigation (Wiltschko & Wiltschko 1999), I describe the most instructive experiments providing evidence that birds are able to home by utilizing atmospheric trace gases perceived by the sense of smell. (1) When released in an unfamiliar distant area, homing pigeons with bisected olfactory nerves fly considerable distances, but fail to approach the home site (Fig. 1, 2, 3). Largely analogous treatments in control birds and experimentals make it extremely unlikely that the failures are due to non-olfactory side-effects. (2) Elimination of trace gases from the inhaled air by means of charcoal filters prior to release, combined with nasal anaesthesia upon release, prevents initial homeward orientation, whereas nasal anaesthesia alone (after smelling of natural release-site air) does not (Fig. 5). (3) Pigeons exposed to natural air at one site and released, without access to natural air, at a quite different site, fly in a direction corresponding to homeward from the site of exposure, but not from the current actual position (Fig. 6). (4) Long-term screening from winds in an aviary at home prevents subsequent homeward orientation from distant sites. Deflecting or reversing winds in a home aviary results in accordingly deflected or reversed orientation (Fig. 7). (5) From areas made familiar by previous flights homing is possible also on a non-olfactory basis. This can be explained in terms of the utilisation of visual landscape features. In as far as related experiments were conducted using reliable methods, the results are unequivocal. On the whole, they can be understood only provided that the birds are able to deduce their position relative to the home site from atmospheric trace gases, and that this ability requires previous opportunity to correlate current wind conditions with simultaneous olfactory conditions at the home site over a lengthy period of time. As an attempt to explain the underlying system, a working hypothesis is presented which postulates that (a) long-range gradients exist in the ratios among several airborne trace substances and that (b) their directions can be derived, at the home site, from changes of ratios in dependence on wind direction. Atmospheric hydrocarbons investigated by means of gas chromatography in an area covering 400 km in diameter did in fact include such postulated ratio gradients (Fig. 8). Their directions were fairly stable even under varying conditions of weather and winds. Correlations among gradient directions and changes of ratios according to wind directions were also found, but the long-term angular relationships have not yet been definitely determined. By means of computer simulations using actually measured atmospheric values as inputs, navigational performances could be created corresponding to those observed in homing pigeons (Fig. 9). Experiments with swifts and starlings indicate that olfactory navigation methods are applied also by wild-living species (Fig. 10 and Fig. 11). A schematic model (Fig. 12) illustrates how they might be integrated in the process of long-distance migratory orientation. Also, the question is raised whether long-distance foraging flights of albatrosses (Fig. 13) and other oceanic birds might be controlled by olfactory signals involving long-range ratio gradients of atmospheric trace gases (Fig. 14). A few experiments are suggested for testing the potential application of olfactory navigation in natural bird life. Die Schlussfolgerung, dass Vögel auf geruchlicher Basis mit Hilfe atmosphärischer Spurenstoffe aus unbekannten Gebieten zu ihrem Heimatort zurück finden, ergibt sich nicht, wie frühere Hypothesen über. das Heimfindevermögen, aus einem theoretischen Ansatz, sondern aus einer Reihe von Experimentalbefunden. (1) In entfernte fremde Regionen verfrachtete Brieftauben fliegen nur dann heimwärts, wenn sie riechen können; Tauben mit durchtrennten Geruchsnerven fliegen zwar oft weite Strecken, nähern sich aber nicht der Heimat. Weitgehend analoge Behandlungen der Versuchs- und Kontrollvögel machen es sehr unwahrscheinlich, dass das Versagen der Ersteren auf geruchsunabhängigen Nebenwirkungen beruht. (2) Die Entfernung von Spurengasen aus der Atemluft durch Aktivkohlefilter vor der Auflassung, kombiniert mit nasaler Lokalnarkose während des Abflugs, verhindert heimgerichtete Abflüge, während die Lokalnarkose allein (nach dem Riechen ungefilterter Luft am Auflassort) das nicht tut. (3) Tauben, die an einem Ort der natürlichen Umgebungsluft exponiert, aber dann ohne Zugang zur natürlichen Luft an einem entgegengesetzt gelegenen Ort aufgelassen werden, fliegen so ab, als wären sie am olfaktorischen Expositionsort und nicht am tatsächlichen Auflassungsort. (4) Langfristiges Abschirmen des Windes in der Heimatvoliere bewirkt völliges Versagen der Heimorientierung, Umlenken oder Umkehren des Windes bewirkt voraussagbare Ablenkung oder Umkehrung der Abflugrichtungen am Auflassort. (5) Aus durch frühere Flüge bekannten Gebieten ist auch nicht-olfaktorisches Heimfinden möglich. Es ist durch Nutzung visueller Landschaftskenntnis erklärbar. Soweit entsprechende Versuche methodisch einwandfrei durchgeführt wurden, sind die Resultate widerspruchsfrei. In ihrer Gesamtheit sind sie nur dann verständlich, wenn man folgert, dass die Vögel Spurengase der Atmosphäre verwerten, aus denen sie ihre Position relativ zum Heimatort ableiten können, vorausgesetzt, dass sie dort über längere Zeit die jeweilige Wind-Situation mit der gleichzeitigen Geruchs-Situation korrelieren konnten. Zur Erklärung des zugrunde liegenden Systems dient eine Arbeitshypothese, die postuliert, dass es (a) weiträumige Gradienten in den Proportionsverhältnissen zwischen verschiedenen Spurensubstanzen gibt und dass (b) deren Richtungen sich am Heimatort aus der Änderung der Proportionen in Abhängigkeit von der Windrichtung ermitteln lassen. Gaschromatische Untersuchungen atmosphärischer Kohlenwasserstoffe in einem Areal von 400 km Durchmesser haben gezeigt, dass das erste Postulat grundsätzlich erfüllt ist und dass die Richtungen räumlicher Proportionsgradienten unter verschiedenen Wetter und Windverhältnissen relativ stabil erhalten bleiben. Korrelationen im Sinne des zweiten Postulats sind ebenfalls erwiesen, doch sind die langfristigen Richtungsbeziehungen noch nicht hinreichend geklärt. In Computersimulationen mit gemessenen Atmosphärenwerten als Eingangsgrößen konnten Navigationsleistungen erzeugt werden, die denen von Brieftauben entsprechen. Versuche mit Mauerseglern und Staren weisen darauf hin, dass die olfaktorische Navigation eine auch unter Wildvögeln verbreitete Fähigkeit ist. Die Vermutung liegt nahe, dass sie beim Vogelzug zum Auffinden des engeren Brut- bzw. Überwinterungsareals dient. Es sollte geprüft werden, ob sie auch bei den weiträumigen Exkursionen von Albatrossen und anderen Hochseevögeln eine Rolle spielt.

[1]  Klaus Schmidt-Koenig,et al.  Bird Navigation: Has Olfactory Orientation Solved the Problem? , 1987, The Quarterly Review of Biology.

[2]  P. Jouventin,et al.  Olfactory Behavior of Foraging Procellariiforms , 1994 .

[3]  R. Wiltschko,et al.  Das Orientierungssystem der Vögel II. Heimfinden und Navigation , 1999, Journal für Ornithologie.

[4]  V. Bingman,et al.  Olfaction and the navigational performance of homing pigeons on the Atlantic coast of Morocco , 2000 .

[5]  H. G. Wallraff,et al.  Simulated navigation based on observed gradients of atmospheric trace gases (Models on pigeon homing, part 3). , 2000, Journal of theoretical biology.

[6]  H. G. Wallraff,et al.  Orientation and homing success of experienced and inexperienced anosmic pigeons , 1989 .

[7]  P. Ioalé,et al.  Homing pigeons do extract directional information from olfactory stimuli , 1990, Behavioral Ecology and Sociobiology.

[8]  Wallraff The magnetic map of homing pigeons: an evergreen phantom , 1999, Journal of theoretical biology.

[9]  E. Gwinner Circannuale Periodik als Grundlage des jahreszeitlichen Funktionswandels bei Zugvögeln , 2005, Journal für Ornithologie.

[10]  P. Berthold Orientation in birds. Spatiotemporal programmes and genetics of orientation. , 1991, EXS.

[11]  H. G. Wallraff Navigation by homing pigeons: updated perspective , 2001 .

[12]  H. G. Wallraff Conceptual approaches to avian navigation systems , 1990, Experientia.

[13]  John P. Croxall,et al.  Satellite tracking of wandering albatrosses (Diomedea exulans) in the South Atlantic , 1992, Antarctic Science.

[14]  Hans G. Wallraff,et al.  Path integration by passively displaced homing pigeons? , 2000, Animal Behaviour.

[15]  Bonadonna,et al.  Homing pigeons use olfactory cues for navigation in england , 1998, The Journal of experimental biology.

[16]  L. Kinnunen,et al.  Sustained human chemosignal unconsciously alters brain function , 2001, Neuroreport.

[17]  J. Waldvogel Olfactory navigation in homing pigeons: are the current models atmospherically realistic? , 1987 .

[18]  Benvenuti,et al.  Homing behaviour of pigeons subjected to unilateral zinc sulphate treatment of their olfactory mucosa , 1996, The Journal of experimental biology.

[19]  J. Desmond,et al.  Blind smell: brain activation induced by an undetected air-borne chemical. , 1999, Brain : a journal of neurology.

[20]  H. G. Wallraff Weitere Volierenversuche mit Brieftauben: Wahrscheinlicher Einfluß dynamischer Faktorens der Atmosphäre auf die Orientierung , 1970, Zeitschrift für vergleichende Physiologie.

[21]  K. Able,et al.  The debate over olfactory navigation by homing pigeons , 1996 .

[22]  W. Driedzic,et al.  Cardiac adaptations to low temperature in non-polar teleost fish , 1996 .

[23]  Hans Georg Wallraff,et al.  Relevance of atmospheric odours and geomagnetic field to pigeon navigation: What is the “map” basis? , 1983 .

[24]  Hypothesen und Argumente zum Navigationsvermögen der Vögel , 1985, Journal für Ornithologie.

[25]  Hans Georg Wallraff,et al.  Homing experiments with starlings deprived of the sense of smell , 1995 .

[26]  J. Becker,et al.  Meteorologische Gesichtspunkte zur olfaktorischen Navigationshypothese , 2005, Journal für Ornithologie.

[27]  H. G. Wallraff,et al.  Pigeon navigation: Charcoal filter removes relevant information from environmental air , 1981, Behavioral Ecology and Sociobiology.

[28]  H. G. Wallraff Navigation by homing pigeons , 1990 .

[29]  B. Bruderer,et al.  [Radar tracking of day and night flight of swifts (Apus spus)]. , 1972, Revue suisse de zoologie; annales de la Societe zoologique suisse et du Museum d'histoire naturelle de Geneve.

[30]  P. Berthold Spatiotemporal programs and genetics of orientation , 1990, Experientia.

[31]  K. Schmidt-Koenig,et al.  Homing in pigeons with impaired vision. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Alerstam,et al.  Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  H. G. Wallraff Homing of pigeons after extirpation of their cochleae and lagenae. , 1972, Nature: New biology.

[34]  T. Grubb,et al.  Olfactory navigation to the nesting burrow in Leach's petrel (oceanodroma leucorrhoa). , 1974, Animal behaviour.

[35]  W. Wiltschko,et al.  Pigeon homing: Olfactory orientation—a paradox , 1989, Behavioral Ecology and Sociobiology.

[36]  H. G. Wallraff,et al.  Pigeon navigation: Time course of olfactory signal processing and dependence on access to fresh environmental air , 1984, Journal of Comparative Physiology A.

[37]  F Papi Orientation in birds. Olfactory navigation. , 1991, EXS.

[38]  H. G. Wallraff Olfaction and homing in pigeons , 1979, Naturwissenschaften.

[39]  A. Foá,et al.  Homing pigeons subjected to section of the anterior commissure can build up two olfactory maps in the deflector lofts , 1986, Journal of Comparative Physiology A.

[40]  M. Tosi,et al.  Archaeomagnetism in Iran , 1972, Nature.

[41]  K. Schmidt-Koenig Zur Geschichte der Orientierungsforschung , 2001, Journal für Ornithologie.

[42]  Gustav Kramer,et al.  Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? , 1953, Journal für Ornithologie.

[43]  Hans Georg Wallraff,et al.  Long-distance navigation of homing pigeons based on airborne olfactory signals , 1990 .

[44]  K. Kenyon,et al.  Homing of Laysan Albatrosses , 1958 .

[45]  B. G. Bang,et al.  Functional anatomy of the olfactory system in 23 orders of birds. , 1971, Acta anatomica.

[46]  V P Bingman,et al.  Olfaction and the homing ability of pigeons in the southeastern United States. , 1996, The Journal of experimental zoology.

[47]  A. Foá,et al.  Orientation of anosmatic pigeons , 1980, Journal of comparative physiology.

[48]  K. G. Johnson,et al.  Population dynamics of a free-living coral: recruitment, growth and survivorship of Manicina areolata (Linnaeus) on the Caribbean coast of Panama , 1992 .

[49]  Francesco Bonadonna,et al.  Effects of zinc sulphate-induced anosmia on homing behaviour of pigeons , 1992 .

[50]  W. Schlund,et al.  INTRA-NASAL ZINC SULPHATE IRRIGATION IN PIGEONS: EFFECTS ON OLFACTORY CAPABILITIES AND HOMING , 1992 .

[51]  P. Ioalé,et al.  Relevance of visual cues for orientation at familiar sites by homing pigeons: an experiment in a circular arena , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  Ole Ø. Mouritsen,et al.  A mathematical expectation model for bird navigation based on the clock-and-compass strategy. , 2000, Journal of theoretical biology.

[53]  O. Schrems,et al.  Meridional distribution of hydroperoxides and formaldehyde in the marine boundary layer of the Atlantic (48°N-35°S) measured during the Albatross campaign , 2000 .

[54]  J. Ganzhorn,et al.  Patterns in air pollution as model for the physical basis for olfactory navigation in pigeon homing , 1995, Journal für Ornithologie.

[55]  Bruno Bruderer,et al.  The Study of Bird Migration by Radar Part 2: Major Achievements , 1997, Naturwissenschaften.

[56]  W. Wiltschko,et al.  Pigeon homing: Different effects of olfactory deprivation in different countries , 1987, Behavioral Ecology and Sociobiology.

[57]  G. Kramer RECENT EXPERIMENTS ON BIRD ORIENTATION , 2008 .

[58]  H. Weimerskirch,et al.  Satellite tracking of Wandering albatrosses , 1990, Nature.

[59]  Schneider,et al.  C3-C14-alkyl nitrates in remote South Atlantic air , 1999, Chemosphere.

[60]  S. Åkesson,et al.  OCEANIC NAVIGATION : ARE THERE ANY FEASIBLE GEOMAGNETIC BI-COORDINATE COMBINATIONS FOR ALBATROSSES? , 1998 .

[61]  G. Nevitt Foraging by Seabirds on an Olfactory Landscape , 1999, American Scientist.

[62]  J. Waldvogel,et al.  Olfactory Orientation by Birds , 1989 .

[63]  H. G. Wallraff,et al.  Pigeon navigation: Site simulation by means of atmospheric odours , 1985, Journal of Comparative Physiology A.

[64]  N. E. Baldaccini,et al.  Pigeon navigation: Effects of wind deflection at home cage on homing behaviour , 1975, Journal of comparative physiology.

[65]  H. G. Wallraff Olfactory deprivation in pigeons: examination of methods applied in homing experiments. , 1988, Comparative biochemistry and physiology. A, Comparative physiology.

[66]  A. Perdeck,et al.  Two Types of Orientation in Migrating Starlings, Sturnus yulgaris L., and Chaffinches, Fringilla coelebs L., as Revealed by Displacement Experiments , 1958 .

[67]  C. Walcott Magnetic maps in pigeons. , 1991, EXS.

[68]  G. Nevitt,et al.  Olfactory foraging by Antarctic procellariiform seabirds: life at high Reynolds numbers. , 2000, The Biological bulletin.

[69]  H. G. Wallraff,et al.  Spatial gradients in ratios of atmospheric trace gases : a study stimulated by experiments on bird navigation , 2000 .

[70]  H. G. Wallraff Über die Heimfindeleistungen von Brieftauben nach Haltung in verschiedenartig abgeschirmten Volieren , 1966, Zeitschrift für vergleichende Physiologie.

[71]  H. Weimerskirch,et al.  Could osmotaxis explain the ability of blue petrels to return to their burrows at night? , 2001, The Journal of experimental biology.

[72]  H. G. Wallraff Navigation mit Duftkarte und Sonnenkompaß: Das Heimfindevermögen der Brieftauben , 1988, Naturwissenschaften.

[73]  R. Fischer,et al.  Levels and pattern of alkyl nitrates, multifunctional alkyl nitrates, and halocarbons in the air over the Atlantic Ocean , 2000 .

[74]  H. G. Wallraff Olfaction and homing in pigeons: Nerve-section experiments, critique, hypotheses , 1980, Journal of comparative physiology.

[75]  W. Wiltschko,et al.  A strategy for beginners! Reply to Wallraff (2000) , 2000, Animal Behaviour.

[76]  J. Kiepenheuer,et al.  Can pigeons be fooled about the actual release site position by presenting them information from another site? , 1985, Behavioral Ecology and Sociobiology.

[77]  Papi,et al.  Pinpointing 'Isla Meta': the case of sea turtles and albatrosses , 1996, The Journal of experimental biology.

[78]  T. Roper Olfaction in birds , 1999 .

[79]  Bingman The importance of atmospheric odours for the homing performance of pigeons in the sonoran desert of the southwestern united states , 1998, The Journal of experimental biology.

[80]  P. Ioalé,et al.  Olfactory experiments on Cory's shearwater (Calonectris diomedea):The effect of intranasal zinc sulphate treatment on short‐range homing behaviour , 1993 .

[81]  Wallraff,et al.  Seven theses on pigeon homing deduced from empirical findings , 1996, The Journal of experimental biology.

[82]  R. Wiltschko,et al.  The function of olfactory input in pigeon orientation: does it provide navigational information or play another role? , 1996, The Journal of experimental biology.

[83]  N. E. Baldaccini,et al.  Pigeon navigation: Effects upon homing behaviour by reversing wind direction at the loft , 1978, Journal of comparative physiology.

[84]  Conceptual approaches to avian navigation systems , 1990 .