Network-induced chaos in integrate-and-fire neuronal ensembles.

It has been shown that a single standard linear integrate-and-fire (IF) neuron under a general time-dependent stimulus cannot possess chaotic dynamics despite the firing-reset discontinuity. Here we address the issue of whether conductance-based, pulsed-coupled network interactions can induce chaos in an IF neuronal ensemble. Using numerical methods, we demonstrate that all-to-all, homogeneously pulse-coupled IF neuronal networks can indeed give rise to chaotic dynamics under an external periodic current drive. We also provide a precise characterization of the largest Lyapunov exponent for these high dimensional nonsmooth dynamical systems. In addition, we present a stable and accurate numerical algorithm for evaluating the largest Lyapunov exponent, which can overcome difficulties encountered by traditional methods for these nonsmooth dynamical systems with degeneracy induced by, e.g., refractoriness of neurons.

[1]  Vreeswijk,et al.  Partial synchronization in populations of pulse-coupled oscillators. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  K. N. Dollman,et al.  - 1 , 1743 .

[3]  Aaditya V. Rangan,et al.  Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks , 2007, Journal of Computational Neuroscience.

[4]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[5]  Gerstner Rapid phase locking in systems of pulse-coupled oscillators with delays. , 1996, Physical review letters.

[6]  M. Timme,et al.  Prevalence of unstable attractors in networks of pulse-coupled oscillators. , 2002, Physical review letters.

[7]  K. Pakdaman,et al.  Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue , 2004 .

[8]  T. Geisel,et al.  Delay-induced multistable synchronization of biological oscillators , 1998 .

[9]  Naoko Nakagawa,et al.  From collective oscillations to collective chaos in a globally coupled oscillator system , 1994 .

[10]  Hideo Hasegawa,et al.  Dynamical mean-field approximation to small-world networks of spiking neurons: from local to global and/or from regular to random couplings. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  John Guckenheimer,et al.  Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..

[12]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[13]  Ernst,et al.  Synchronization induced by temporal delays in pulse-coupled oscillators. , 1995, Physical review letters.

[14]  S. Coombes Liapunov exponents and mode-locked solutions for integrate-and-fire dynamical systems , 1999 .

[15]  Y. Kuramoto,et al.  Anomalous Lyapunov spectrum in globally coupled oscillators , 1995 .

[16]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[17]  Anthony N. Burkitt,et al.  A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties , 2006, Biological Cybernetics.

[18]  Paul Manneville,et al.  Liapounov exponents for the Kuramoto-Sivashinsky model , 1985 .

[19]  H. Robinson,et al.  Postsynaptic Variability of Firing in Rat Cortical Neurons: The Roles of Input Synchronization and Synaptic NMDA Receptor Conductance , 2000, The Journal of Neuroscience.

[20]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[21]  J. Rinzel,et al.  INTEGRATE-AND-FIRE MODELS OF NERVE MEMBRANE RESPONSE TO OSCILLATORY INPUT. , 1981 .

[22]  Marc Timme,et al.  Unstable attractors induce perpetual synchronization and desynchronization. , 2002, Chaos.

[23]  H. Tuckwell Introduction to Theoretical Neurobiology: Linear Cable Theory and Dendritic Structure , 1988 .

[24]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[25]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[26]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[27]  Peter A Tass,et al.  Phase chaos in coupled oscillators. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Peter A. Tass,et al.  Desynchronization and chaos in the kuramoto model , 2005 .

[29]  P. Müller Calculation of Lyapunov exponents for dynamic systems with discontinuities , 1995 .

[30]  Sompolinsky,et al.  Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. , 1993, Physical review letters.

[31]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  R. Pérez,et al.  Fine Structure of Phase Locking , 1982 .

[33]  A. Selverston,et al.  Dynamical principles in neuroscience , 2006 .

[34]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Christiansen,et al.  Nonchaotic transition from quasiperiodicity to complete phase locking. , 1988, Physical review letters.

[36]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[37]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[38]  Anthony N. Burkitt,et al.  A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input , 2006, Biological Cybernetics.

[39]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Peter A. Tass,et al.  Chaotic Attractor in the Kuramoto Model , 2005, Int. J. Bifurc. Chaos.

[41]  K. Elworthy RANDOM DYNAMICAL SYSTEMS (Springer Monographs in Mathematics) , 2000 .

[42]  R. Shapley,et al.  An egalitarian network model for the emergence of simple and complex cells in visual cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Ling Hong,et al.  Crisis of interspike intervals in Hodgkin–Huxley model , 2006 .

[44]  Ying-Cheng Lai,et al.  Universal scaling of Lyapunov exponents in coupled chaotic oscillators. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  David Cai,et al.  Maximum-entropy closures for kinetic theories of neuronal network dynamics. , 2006, Physical review letters.

[46]  W. Senn,et al.  Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. , 2003, Journal of neurophysiology.

[47]  S. Strogatz,et al.  Phase diagram for the collective behavior of limit-cycle oscillators. , 1990, Physical review letters.

[48]  Abbott,et al.  Asynchronous states in networks of pulse-coupled oscillators. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  J. Teramae,et al.  Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. , 2004, Physical review letters.

[50]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[51]  J. Movshon,et al.  Spike train encoding by regular-spiking cells of the visual cortex. , 1996, Journal of neurophysiology.

[52]  Aaditya V. Rangan,et al.  Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Aaditya V. Rangan,et al.  Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  M. Timme,et al.  Long chaotic transients in complex networks. , 2004, Physical review letters.

[55]  Tomas Bohr,et al.  Complete Devil's Staircase, Fractal Dimension, and Universality of Mode- Locking Structure in the Circle Map , 1983 .

[56]  A. Pluchino,et al.  Phase transitions and chaos in long-range models of coupled oscillators , 2008, EPL (Europhysics Letters).

[57]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.