Restratification at a California Current Upwelling Front. Part II: Dynamics

A coordinated multiplatform campaign collected detailed measurements of a restratifying surface intensified upwelling front within the California Current System. A companion paper outlined the evolution of the front, revealing the importance of lateral advection at tilting isopycnals and increasing stratification in the surface boundary layer with a buoyancy flux equivalent to 2000 W m−2. Here, observations were compared with idealized models to explore the dynamics contributing to the stratification. A 2D model combined with a reduced form of the horizontal momentum equations highlight the importance of transient Ekman dynamics, turbulence, and thermal wind imbalance at modulating shear in the boundary layer. Specifically, unsteady frictional adjustment to the rapid decrease in wind stress created vertically sheared currents that advected horizontal gradients to increase vertical stratification on superinertial time scales. The magnitude of stratification depended on the strength of the horizontal buoyancy gradient. This enhanced stratification due to horizontal advection inhibited nighttime mixing that would have otherwise eroded stratification from the diurnal warm layer. This underscores the importance of near-surface lateral restratification for the upper ocean buoyancy budget on diel time scales.

[1]  Craig M. Lee,et al.  Restratification at a California Current Upwelling Front. Part I: Observations , 2020, Journal of Physical Oceanography.

[2]  B. Fox‐Kemper,et al.  A perturbation approach to understanding the effects of turbulence on frontogenesis , 2019, Journal of Fluid Mechanics.

[3]  J. McWilliams,et al.  The Role of Horizontal Divergence in Submesoscale Frontogenesis , 2019, Journal of Physical Oceanography.

[4]  J. McWilliams,et al.  Diurnal Evolution of Submesoscale Front and Filament Circulations , 2018, Journal of Physical Oceanography.

[5]  S. Sarkar,et al.  Ageostrophic Secondary Circulation at a Submesoscale Front and the Formation of Gravity Currents , 2018, Journal of Physical Oceanography.

[6]  Dimitris Menemenlis,et al.  Ocean submesoscales as a key component of the global heat budget , 2018, Nature Communications.

[7]  H. Fernando,et al.  Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream , 2018 .

[8]  J. McWilliams,et al.  Submesoscale Coherent Structures on the Continental Shelf , 2017 .

[9]  J. McWilliams,et al.  Effects of the Submesoscale on the Potential Vorticity Budget of Ocean Mode Waters , 2017, Journal of Physical Oceanography.

[10]  James C. McWilliams,et al.  Submesoscale currents in the ocean , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Craig M. Lee,et al.  Global Estimates of Lateral Springtime Restratification , 2016 .

[12]  Christian E. Buckingham,et al.  Open-Ocean Submesoscale Motions: A Full Seasonal Cycle of Mixed Layer Instabilities from Gliders , 2016 .

[13]  M. Mcphaden,et al.  Wind, Waves, and Fronts: Frictional Effects in a Generalized Ekman Model* , 2016 .

[14]  Alexander F. Shchepetkin,et al.  Filament Frontogenesis by Boundary Layer Turbulence , 2015 .

[15]  J. McWilliams,et al.  Submesoscale Cold Filaments in the Gulf Stream , 2014 .

[16]  C. Shakespeare,et al.  A generalized mathematical model of geostrophic adjustment and frontogenesis: uniform potential vorticity , 2013, Journal of Fluid Mechanics.

[17]  Craig M. Lee,et al.  Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms , 2012, Science.

[18]  Daniel L. Rudnick,et al.  Frontal dynamics in a California Current System shallow front: 1. Frontal processes and tracer structure , 2010 .

[19]  T. M. Johnston,et al.  Frontal dynamics in a California Current System shallow front: 2. Mesoscale vertical velocity , 2010 .

[20]  B. Samuels,et al.  Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations , 2010 .

[21]  Gert-Jan Steeneveld,et al.  A Conceptual View on Inertial Oscillations and Nocturnal Low-Level Jets , 2010 .

[22]  Meghan F. Cronin,et al.  Near-Surface Shear Flow in the Tropical Pacific Cold Tongue Front* , 2009 .

[23]  B. Fox‐Kemper,et al.  Parameterization of mixed layer eddies. Part II: Prognosis and, impact , 2008 .

[24]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[25]  Giulio Boccaletti,et al.  Mixed Layer Instabilities and Restratification , 2007 .

[26]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[27]  M. Alford,et al.  Sub‐mesoscale lateral density structure in the oceanic surface mixed layer , 2006 .

[28]  J. McWilliams,et al.  Ekman Layer Rectification , 2006 .

[29]  Andrew T. Jessup,et al.  Sea surface temperature signatures of oceanic internal waves in low winds , 2006 .

[30]  L. Thomas,et al.  Destruction of Potential Vorticity by Winds , 2005 .

[31]  Craig M. Lee,et al.  Intensification of ocean fronts by down-front winds , 2005 .

[32]  Rudnick,et al.  Compensation of horizontal temperature and salinity gradients in the ocean mixed layer , 1999, Science.

[33]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[34]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[35]  W. Young The Subinertial Mixed Layer Approximation , 1994 .

[36]  C. Garrett,et al.  Mixed Layer Restratification Due to a Horizontal Density Gradient , 1994 .

[37]  Robert Pinkel,et al.  Diurnal cycling: observations and models of the upper-ocean response to diurnal heating, cooling, and wind mixing. Technical report , 1986 .

[38]  R. Millard,et al.  Comparison between observed and simulated wind-generated inertial oscillations , 1970 .

[39]  Peter H. Stone,et al.  On Non-Geostrophic Baroclinic Stability , 1966 .

[40]  E. T. Eady,et al.  Long Waves and Cyclone Waves , 1949 .

[41]  P. Winsor,et al.  Scales of horizontal density structure in the Chukchi Sea surface layer , 2013 .

[42]  Gurvan Madec,et al.  Modifications of gyre circulation by sub-mesoscale physics , 2010 .

[43]  J. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .

[44]  M. Levine,et al.  Observations of mixed layer restratification by onshore surface transport following wind reversal in a coastal upwelling region , 2008 .

[45]  Francis P. Bretherton,et al.  Atmospheric Frontogenesis Models: Mathematical Formulation and Solution , 1972 .