Theory and computation of nuclear magnetic resonance parameters.

The art of quantum chemical electronic structure calculation has over the last 15 years reached a point where systematic computational studies of magnetic response properties have become a routine procedure for molecular systems. One of their most prominent areas of application are the spectral parameters of nuclear magnetic resonance (NMR) spectroscopy, due to the immense importance of this experimental method in many scientific disciplines. This article attempts to give an overview on the theory and state-of-the-art of the practical computations in the field, in terms of the size of systems that can be treated, the accuracy that can be expected, and the various factors that would influence the agreement of even the most accurate imaginable electronic structure calculation with experiment. These factors include relativistic effects, thermal effects, as well as solvation/environmental influences, where my group has been active. The dependence of the NMR spectra on external magnetic and optical fields is also briefly touched on.

[1]  A. Jameson,et al.  Grand canonical Monte Carlo simulations of the distribution and chemical shifts of xenon in the cages of zeolite NaA. II. Structure of the adsorbed fluid , 1994 .

[2]  Elfi Kraka,et al.  Electron correlation and the self-interaction error of density functional theory , 2002 .

[3]  Jan Lundell,et al.  Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. , 2003, Journal of the American Chemical Society.

[4]  M. Gerry,et al.  XeCu covalent bonding in XeCuF and XeCuCl, characterized by fourier transform microwave spectroscopy supported by quantum chemical calculations. , 2006, Journal of the American Chemical Society.

[5]  A. Jameson,et al.  Grand canonical Monte Carlo simulations of the distribution and chemical shifts of xenon in the cages of zeolite NaA. I. Distribution and 129Xe chemical shifts , 1994 .

[6]  C. Ratcliffe,et al.  The Anisotropic Chemical Shift of 129Xe in the Molecular Sieve ALPO-11: A Dynamic Averaging Model , 1995 .

[7]  PEKKA MANNINEN,et al.  Systematic Gaussian basis‐set limit using completeness‐optimized primitive sets. A case for magnetic properties , 2006, J. Comput. Chem..

[8]  N. Runeberg,et al.  Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding. , 2004, The Journal of chemical physics.

[9]  Pekka Pyykkö,et al.  Relativistic, nearly basis-set-limit nuclear magnetic shielding constants of the rare gases He-Rn: A way to absolute nuclear magnetic resonance shielding scales , 2003 .

[10]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay–Berne mesogen , 1999 .

[11]  Kenneth Ruud,et al.  Quadratic response calculations of the electronic spin-orbit contribution to nuclear shielding tensors , 1998 .

[12]  Ian M. Mills,et al.  Anharmonic force constant calculations , 1972 .

[13]  U. Edlund,et al.  Lithium-7, silicon-29, tin-119, and lead-207 NMR studies of phenyl-substituted Group 4 anions , 1987 .

[14]  C. Jameson,et al.  Ab initio calculations of the intermolecular chemical shift in nuclear magnetic resonance in the gas phase and for adsorbed species , 1992 .

[15]  Daniel Sebastiani,et al.  A New ab-Initio Approach for NMR Chemical Shifts in Periodic Systems , 2001 .

[16]  A. Barra,et al.  Parity non-conservation and NMR observables. calculation of Tl resonance frequency differences in enantiomers , 1986 .

[17]  P. Diehl,et al.  Temperature dependence of nuclear shielding and quadrupolar coupling of noble gases in liquid crystals , 1992 .

[18]  Josef Paldus,et al.  Stability Conditions for the Solutions of the Hartree—Fock Equations for Atomic and Molecular Systems. Application to the Pi‐Electron Model of Cyclic Polyenes , 1967 .

[19]  S. Kirpekar,et al.  Erratum: “Nuclear spin–spin coupling in the acetylene isotopomers calculated from ab initio correlated surfaces for 1J(C, H), 1J(C, C), 2J(C, H), and 3J(H, H)” [J. Chem. Phys. 112, 3735 (2000)] , 2001 .

[20]  H. Ågren,et al.  INTERNUCLEAR DISTANCE DEPENDENCE OF THE SPIN-ORBIT COUPLING CONTRIBUTIONS TO PROTON NMR CHEMICAL SHIFTS , 1998 .

[21]  Dennis R. Salahub,et al.  Spin-orbit correction to NMR shielding constants from density functional theory , 1996 .

[22]  H. Nakatsuji,et al.  Quasirelativistic theory for magnetic shielding constants. II. Gauge-including atomic orbitals and applications to molecules , 2003 .

[23]  J. Almlöf,et al.  Energy-optimized GTO basis sets for LCAO calculations. A gradient approach , 1986 .

[24]  F. J. Blas,et al.  Stability of smectic phases in the Gay-Berne model. , 2004, The Journal of chemical physics.

[25]  M. Kaupp,et al.  Density functional calculations of NMR shielding tensors for paramagnetic systems with arbitrary spin multiplicity: validation on 3d metallocenes. , 2007, The Journal of chemical physics.

[26]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[27]  T. Pennanen,et al.  Nuclear magnetic shielding and quadrupole coupling tensors in liquid water: a combined molecular dynamics simulation and quantum chemical study. , 2004, Journal of the American Chemical Society.

[28]  J. Jokisaari NMR of noble gases dissolved in isotropic and anisotropic liquids , 1994 .

[29]  Notker Rösch,et al.  A transparent interpretation of the relativistic contribution to the N.M.R. ‘heavy atom chemical shift’ , 1987 .

[30]  P. Fowler,et al.  The effects of rotation, vibration and isotopic substitution on the electric dipole moment, the magnetizability and the nuclear magnetic shielding of the water molecule , 1981 .

[31]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[32]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[33]  Pekka Manninen,et al.  Methodological aspects in the calculation of parity-violating effects in nuclear magnetic resonance parameters. , 2007, The Journal of chemical physics.

[34]  Jochen Autschbach,et al.  Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. II. Spin–orbit coupling effects and anisotropies , 2000 .

[35]  A. Jameson,et al.  Temperature and density dependence of 129Xe chemical shift in rare gas mixtures , 1975 .

[36]  A. Buckingham,et al.  The effect of circularly polarized light on NMR spectra , 1997 .

[37]  H. Fukui,et al.  Calculation of nuclear magnetic shieldings. XIII. Gauge-origin independent relativistic effects , 1999 .

[38]  J. Vaara,et al.  Magnetic field dependence of nuclear magnetic shielding in closed-shell atomic systems , 2003 .

[39]  R. Ahlrichs,et al.  STABILITY ANALYSIS FOR SOLUTIONS OF THE CLOSED SHELL KOHN-SHAM EQUATION , 1996 .

[40]  Wenjian Liu,et al.  Four-component relativistic theory for nuclear magnetic shielding constants: the orbital decomposition approach. , 2007, The Journal of chemical physics.

[41]  J. Jokisaari,et al.  13C−13C Spin−Spin Coupling Tensors in Benzene As Determined Experimentally by Liquid Crystal NMR and Theoretically by ab Initio Calculations , 1996 .

[42]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[43]  So Hirata,et al.  Exact exchange treatment for molecules in finite-basis-set kohn-sham theory , 1999 .

[44]  K. Mikkelsen,et al.  Solvent effects on nuclear shieldings and spin–spin couplings of hydrogen selenide , 1998 .

[45]  R. Wasylishen,et al.  A more reliable oxygen‐17 absolute chemical shielding scale , 1984 .

[46]  A. J. Easteal,et al.  Viscosity of Molten ZnCl2 and Supercritical Behavior in Its Binary Solutions , 1972 .

[47]  Corio Multilinear interactions in high-resolution spectra , 1998, Journal of magnetic resonance.

[48]  M. Zerbetto,et al.  Development and validation of an integrated computational approach for the modeling of cw-ESR spectra of free radicals in solution: p-(methylthio)phenyl nitronylnitroxide in toluene as a case study. , 2006, Journal of the American Chemical Society.

[49]  Francesco Mauri,et al.  First-Principles Calculation of 17O, 29Si, and 23Na NMR Spectra of Sodium Silicate Crystals and Glasses , 2004 .

[50]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[51]  Dennis R. Salahub,et al.  Nuclear magnetic resonance spin-spin coupling constants from density functional theory: Problems and results , 1996 .

[52]  Y. Hiltunen,et al.  Isotope and temperature effects on the 13C and 77Se nuclear shielding in carbon diselenide , 1997 .

[53]  Andreas Görling,et al.  New KS Method for Molecules Based on an Exchange Charge Density Generating the Exact Local KS Exchange Potential , 1999 .

[54]  P. Pyykkö,et al.  How Do Spin–Orbit-Induced Heavy-Atom Effects on NMR Chemical Shifts Function? Validation of a Simple Analogy to Spin–Spin Coupling by Density Functional Theory (DFT) Calculations on Some Iodo Compounds , 1998 .

[55]  M. Pecul,et al.  Electric field effects on the shielding constants of noble gases: a four-component relativistic Hartree-Fock study. , 2004, The Journal of chemical physics.

[56]  Kaski,et al.  Spin-spin coupling tensors in fluoromethanes , 2000, Chemistry.

[57]  J. Vaara,et al.  Laser-induced splittings in the nuclear magnetic resonance spectra of the rare gas atoms , 2004, physics/0406073.

[58]  Trond Saue,et al.  An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. , 2007, The Journal of chemical physics.

[59]  Ville Weijo,et al.  Perturbational calculations of parity-violating effects in nuclear-magnetic-resonance parameters. , 2005, The Journal of chemical physics.

[60]  W. Johnson,et al.  Electric and magnetic susceptibilities and shielding factors for closed-shell atoms and ions of high nuclear charge , 1982 .

[61]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: hydrogen halides , 1996 .

[62]  J. Gauss Analytic second derivatives for the full coupled-cluster singles, doubles, and triples model: Nuclear magnetic shielding constants for BH, HF, CO, N2, N2O, and O3 , 2002 .

[63]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[64]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[65]  Boyd M. Goodson Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. , 2002 .

[66]  F. Köhler KMR-spektroskopie an paramagnetischen komplexen: XI. 13C-, 1H-spektren und darstellung alkylierter nickelocene, kobaltocene, chromocene und vanadocene☆ , 1976 .

[67]  Jan Lundell,et al.  A stable argon compound , 2000, Nature.

[68]  Nicholas C. Handy,et al.  The density functional calculation of nuclear shielding constants using London atomic orbitals , 1995 .

[69]  Hans Jørgen Aa Jensen,et al.  Full four‐component relativistic calculations of NMR shielding and indirect spin–spin coupling tensors in hydrogen halides , 1999 .

[70]  W. G. Schneider,et al.  Proton Magnetic Resonance Chemical Shift of Free (Gaseous) and Associated (Liquid) Hydride Molecules , 1958 .

[71]  J. Vaara,et al.  Density-functional calculations of relativistic spin-orbit effects on nuclear magnetic shielding in paramagnetic molecules. , 2005, The Journal of chemical physics.

[72]  Cleaver,et al.  Extension and generalization of the Gay-Berne potential. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[73]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[74]  J. Jokisaari,et al.  Indirect Fluorine Coupling Anisotropies in p-Difluorobenzene: Implications to Orientation and Structure Determination of Fluorinated Liquid Crystals , 1999 .

[75]  T. Helgaker,et al.  Density-Functional and Coupled-Cluster Singles-and-Doubles Calculations of the Nuclear Shielding and Indirect Nuclear Spin-Spin Coupling Constants of o-Benzyne. , 2007, Journal of chemical theory and computation.

[76]  Ž. Rinkevičius,et al.  Calculations of nuclear magnetic shielding in paramagnetic molecules , 2003 .

[77]  Evert Jan Baerends,et al.  Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance , 1999 .

[78]  Trygve Helgaker,et al.  Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants , 1999 .

[79]  Dennis R. Salahub,et al.  Calculation of spin—spin coupling constants using density functional theory , 1994 .

[80]  J. Sánchez-Marín,et al.  The vertical spectrum of H2CO revisited: (SC)2-CI and CC calculations , 2003 .

[81]  Louie,et al.  Ab Initio Theory of NMR Chemical Shifts in Solids and Liquids. , 1996, Physical review letters.

[82]  P. Lantto,et al.  Experimental and Theoretical ab Initio Study of the 13C−13C Spin−Spin Coupling and 1H and 13C Shielding Tensors in Ethane, Ethene, and Ethyne , 1998 .

[83]  P. Åstrand,et al.  Calculation of the vibrational wave function of polyatomic molecules , 2000 .

[84]  P. Provasi,et al.  Relativistic effects on nuclear magnetic shielding constants in HX and CH3X (X=Br,I) based on the linear response within the elimination of small component approach. , 2004, The Journal of chemical physics.

[85]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[86]  L. Visscher,et al.  On the origin and contribution of the diamagnetic term in four-component relativistic calculations of magnetic properties , 1999 .

[87]  R. Ditchfield,et al.  Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility , 1972 .

[88]  Jun-ichi Takimoto,et al.  Molecular dynamics simulation study on the phase behavior of the Gay-Berne model with a terminal dipole and a flexible tail. , 2004, The Journal of chemical physics.

[89]  J. Facelli,et al.  Advances in theoretical and physical aspects of spin-spin coupling constants , 1993 .

[90]  J. Jokisaari,et al.  NUCLEAR MAGNETIC SHIELDING OF NOBLE GASES IN LIQUID CRYSTALS , 1999 .

[91]  Hiroshi Nakatsuji,et al.  SPIN-ORBIT EFFECT ON THE MAGNETIC SHIELDING CONSTANT USING THE AB INITIO UHF METHOD , 1995 .

[92]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[93]  R. Baer,et al.  Density functional theory with correct long-range asymptotic behavior. , 2004, Physical review letters.

[94]  K. Ruud,et al.  Leading-order relativistic effects on nuclear magnetic resonance shielding tensors. , 2005, The Journal of chemical physics.

[95]  K. Ruud,et al.  Perturbational ab initio calculations of relativistic contributions to nuclear magnetic resonance shielding tensors , 2003 .

[96]  Jürgen Gauss,et al.  Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants. , 2003, The Journal of chemical physics.

[97]  A. Rizzo,et al.  A STUDY OF THE EFFECT OF CIRCULARLY POLARIZED LIGHT ON NMR SPECTRA AND RELATED PROPERTIES OF CS2 , 1999 .

[98]  H. Quiney,et al.  Nuclear electric quadrupole moment of gold. , 2007, The Journal of chemical physics.

[99]  L. Visscher,et al.  Molecular relativistic calculations of the electric field gradients at the nuclei in the hydrogen halides , 1998 .

[100]  H. Fukui,et al.  Calculation of nuclear magnetic shieldings. XV. Ab initio zeroth-order regular approximation method , 2002 .

[101]  J. I. Melo,et al.  Relativistic effects on the nuclear magnetic shielding tensor , 2003 .

[102]  A. Buckingham,et al.  High-Resolution Nuclear Magnetic Resonance Spectroscopy in a Circularly Polarized Laser Beam , 1994, Science.

[103]  K. Ruud,et al.  Erratum: “Leading-order relativistic effects on nuclear magnetic resonance shielding tensors” [J. Chem. Phys. 122, 114107 (2005)] , 2006 .

[104]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[105]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[106]  F. Köhler,et al.  Determination of the electronic structure, the spin density distribution, and approach to the geometric structure of substituted cobaltocenes from NMR spectroscopy in solution , 1988 .

[107]  R. A. Aziz,et al.  On the Xe-Xe potential energy curve and related properties , 1986 .

[108]  C. Jameson,et al.  Molecular dynamics averaging of Xe chemical shifts in liquids. , 2004, The Journal of chemical physics.

[109]  D. Chong Completeness profiles of one-electron basis sets , 1995 .

[110]  P. Lantto,et al.  Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects. , 2006, The Journal of chemical physics.

[111]  S. Kirpekar,et al.  Nuclear spin–spin coupling in the acetylene isotopomers calculated from ab initio correlated surfaces for 1J(C, H), 1J(C, C), 2J(C, H), and 3J(H, H) , 2000 .

[112]  J. Saunavaara,et al.  Experimental and quantum-chemical determination of the (2)H quadrupole coupling tensor in deuterated benzenes. , 2007, Physical chemistry chemical physics : PCCP.

[113]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[114]  T. Rantala,et al.  Xe129 adsorbed in AlPO4-11 molecular sieve: Molecular dynamics simulation of adsorbate dynamics and NMR chemical shift , 1997 .

[115]  P. Diehl,et al.  Effects of anharmonic vibrations on molecular properties , 1987 .

[116]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[117]  K. Ruud,et al.  Rovibrational effects, temperature dependence, and isotope effects on the nuclear shielding tensors of water: A new 17 O absolute shielding scale , 1998 .

[118]  H. Fukui,et al.  Calculation of nuclear magnetic shieldings. XII. Relativistic no-pair equation , 1998 .

[119]  A. Barra,et al.  Possible Observation of Parity Nonconservation by High-Resolution NMR , 1988 .

[120]  Xiulan Xie,et al.  Solid-state NMR spectroscopy of paramagnetic metallocenes. , 2001, Journal of magnetic resonance.

[121]  T. Helgaker,et al.  Spin–spin coupling tensors by density-functional linear response theory , 2002 .

[122]  Vignale,et al.  Density-functional theory in strong magnetic fields. , 1987, Physical review letters.

[123]  Jochen Autschbach,et al.  Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. I. Formalism and scalar relativistic results for heavy metal compounds , 2000 .

[124]  T. Oka,et al.  Effect of vibration and rotation on the internuclear distance , 1964 .

[125]  Roderick E. Wasylishen,et al.  A revised experimental absolute magnetic shielding scale for oxygen , 2002 .

[126]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon , 1996 .

[127]  J. Gauss,et al.  Triple excitation effects in coupled-cluster calculations of indirect spin–spin coupling constants , 2001 .

[128]  Carl Eckart,et al.  Some Studies Concerning Rotating Axes and Polyatomic Molecules , 1935 .

[129]  J. Vaara,et al.  Magnetic-field dependence of59Conuclear magnetic shielding in Co(III) complexes , 2004 .

[130]  P. Pyykkö,et al.  Magnetic-field-induced quadrupole coupling in the nuclear magnetic resonance of noble-gas atoms and molecules , 2004 .

[131]  R. Cammi The Hartree–Fock calculation of the magnetic properties of molecular solutes , 1998 .

[132]  J. Pople,et al.  Electromagnetic properties of compressed gases , 1956 .

[133]  Possibility of Field-Dependent Nuclear Magnetic Shielding , 1970 .

[134]  Jörg Kussmann,et al.  Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling method. , 2004, Angewandte Chemie.

[135]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[136]  A. Jameson,et al.  Temperature and density dependence of 129Xe chemical shift in xenon gas , 1973 .

[137]  A. Heise,et al.  DETERMINATION OF THE SPIN DISTRIBUTION IN NITRONYLNITROXIDES BY SOLID-STATE 1H, 2H, AND 13C NMR SPECTROSCOPY , 1999 .

[138]  P. Pyykkö,et al.  Magnetic-field-induced quadrupole splitting in gaseous and liquid 131Xe NMR: quadratic and quartic field dependence. , 2001, Physical review letters.

[139]  T. Helgaker,et al.  An electronic Hamiltonian for origin independent calculations of magnetic properties , 1991 .

[140]  Jürgen Gauss,et al.  NMR chemical shift calculations within local correlation methods: the GIAO-LMP2 approach , 2000 .

[141]  Hiroshi Nakatsuji,et al.  Quasirelativistic theory for the magnetic shielding constant. I. Formulation of Douglas-Kroll-Hess transformation for the magnetic field and its application to atomic systems , 2003 .

[142]  S. Patchkovskii,et al.  Curing difficult cases in magnetic properties prediction with self-interaction corrected density functional theory , 2001 .

[143]  J. I. Melo,et al.  Orbital contributions to relativistic corrections of the NMR nuclear magnetic shielding tensor originated in scalar field-dependent operators , 2003 .

[144]  Norman Ramsey Magnetic Shielding of Nuclei in Molecules , 1950 .

[145]  P. Lantto,et al.  Relativistic heavy-atom effects on heavy-atom nuclear shieldings. , 2006, The Journal of chemical physics.

[146]  P. Åstrand,et al.  An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules , 2000 .

[147]  G. Aucar,et al.  Relativistic Theory for Indirect Nuclear Spin-Spin Couplings within the Polarization Propagator Approach , 1993 .

[148]  Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component. , 2006, The Journal of chemical physics.