Formation mechanisms of spatially-directed zincblende gallium nitride nanocrystals

We report on the spatially selective formation of GaN nanocrystals embedded in GaAs. Broad-area N+ implantation followed by rapid thermal annealing leads to the formation of nanocrystals at the depth of maximum ion damage. With additional irradiation using a Ga+ focused ion beam, selective lateral positioning of the nanocrystals within the GaAs matrix is observed in isolated regions of increased vacancy concentration. Following rapid thermal annealing, the formation of zincblende GaN is observed in the regions of highest vacancy concentration. The nucleation of zincblende nanocrystals over the wurtzite phase of bulk GaN is consistent with the predictions of a thermodynamic model for the nanoscale size-dependence of GaN nucleation.

[1]  R. Goldman,et al.  Blister formation in ion-implanted GaAs: Role of diffusivity , 2009 .

[2]  K. Jacob,et al.  Discussion of enthalpy, entropy and free energy of formation of GaN , 2009 .

[3]  I. Lyubinetsky,et al.  Focused ion beam directed self-assembly (Cu2O on SrTiO3 ): FIB pit and Cu2O nanodot evolution , 2008 .

[4]  Qi-Feng Chen,et al.  Structural and thermodynamic properties of GaN at high pressures and high temperatures , 2005 .

[5]  Jonathan J. Wierer,et al.  Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes , 2005 .

[6]  R. Goldman,et al.  Formation and blistering of GaAsN nanostructure layers , 2004 .

[7]  M. Taniwaki,et al.  Novel nano-fabrication technique utilizing ion beam , 2003 .

[8]  M. Reuter,et al.  Lateral control of self-assembled island nucleation by focused-ion-beam micropatterning , 2003 .

[9]  R. Goldman,et al.  Evolution of structural and optical properties of ion-beam synthesized GaAsN nanostructures , 2002 .

[10]  K. Shiraishi,et al.  A simple approach to structural stability of semiconductors and their interfaces , 2001 .

[11]  R. Banerjee,et al.  Effect of the size-induced structural transformation on the band gap in CdS nanoparticles , 2000 .

[12]  B. Monemar,et al.  III-V nitrides—important future electronic materials , 1999 .

[13]  Z. Liliental-Weber,et al.  Synthesis of GaN by N ion implantation in GaAs (001) , 1995 .

[14]  Greene,et al.  Temperature-dependent optical band gap of the metastable zinc-blende structure beta -GaN. , 1994, Physical review. B, Condensed matter.

[15]  H. Lezec,et al.  Maskless InP wire formation on planar GaAs substrates , 1994 .

[16]  D. K. Ferry,et al.  Hot electron microwave conductivity of wide bandgap semiconductors , 1976 .

[17]  James H. Edgar,et al.  Properties, processing and applications of gallium nitride and related semiconductors , 1999 .

[18]  M. Paisley,et al.  Luminescence and lattice parameter of cubic gallium nitride , 1992 .