Phosphorylation of RIM1α by PKA Triggers Presynaptic Long-Term Potentiation at Cerebellar Parallel Fiber Synapses

Presynaptic activation of protein kinase A (PKA) induces LTP in cerebellar parallel fiber synapses. Presynaptic LTP is known to require the active zone protein RIM1alpha, but the underlying induction mechanism remains unclear. We now show that PKA directly phosphorylates RIM1alpha at two sites. Using paired recordings from cultured cerebellar granule and Purkinje neurons, we demonstrate that LTP is absent in neurons from RIM1alpha KO mice but is rescued by presynaptic expression of RIM1alpha. Mutant RIM1alpha lacking the N-terminal phosphorylation site is unable to rescue LTP in RIM1alpha knockout neurons but selectively suppresses LTP in wild-type neurons. Our findings suggest that PKA-mediated phosphorylation of the active zone protein RIM1alpha at a single N-terminal site induces presynaptic LTP.

[1]  Marc G. Weisskopf,et al.  Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses , 1995, Nature.

[2]  V. P. Whittaker Thirty years of synaptosome research , 1993, Journal of neurocytology.

[3]  M. Yeckel,et al.  Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway , 2001, Neuroscience.

[4]  K. Shibuki,et al.  Cerebellar long‐term potentiation under suppressed postsynaptic Ca2+ activity , 1992, Neuroreport.

[5]  M. Sakurai Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Südhof,et al.  Long-term potentiation in mice lacking synapsins , 1995, Neuropharmacology.

[7]  A. C. Greenwood,et al.  Quantal mechanism of long-term potentiation in hippocampal mossy-fiber synapses. , 1994, Journal of neurophysiology.

[8]  D. Linden,et al.  Long-Term Potentiation of Glial Synaptic Currents in Cerebellar Culture , 1997, Neuron.

[9]  M. Zhen,et al.  The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans , 1999, Nature.

[10]  D. Linden,et al.  Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis , 2000, Neuron.

[11]  T. Hirano,et al.  Differential pre‐ and postsynaptic mechanisms for synapic potentiation and depression between a granule cell and a purkinje cell in rat cerebellar culture , 1991, Synapse.

[12]  M. Sheng,et al.  Postsynaptic Signaling and Plasticity Mechanisms , 2002, Science.

[13]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[14]  D. Smith,et al.  Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. , 1988, Gene.

[15]  T. Hirano,et al.  Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture , 1990, Neuroscience Letters.

[16]  B. Henderson Post-Transcriptional Regulation , 2002 .

[17]  G. Matthews,et al.  The Role of Mitochondria in Presynaptic Calcium Handling at a Ribbon Synapse , 2000, Neuron.

[18]  O. Manzoni,et al.  Visualization of Cyclic AMP–Regulated Presynaptic Activity at Cerebellar Granule Cells , 1998, Neuron.

[19]  T. Südhof,et al.  The RIM/NIM Family of Neuronal C2 Domain Proteins , 2000, The Journal of Biological Chemistry.

[20]  C. Daly,et al.  Post-Transcriptional Regulation of Synaptic Vesicle Protein Expression and the Developmental Control of Synaptic Vesicle Formation , 1997, The Journal of Neuroscience.

[21]  Kazumasa Umeda,et al.  Presynaptic Ca2+ Entry Is Unchanged during Hippocampal Mossy Fiber Long-Term Potentiation , 2002, The Journal of Neuroscience.

[22]  G. Lonart RIM1: an edge for presynaptic plasticity , 2002, Trends in Neurosciences.

[23]  T. Südhof,et al.  A Phospho-Switch Controls the Dynamic Association of Synapsins with Synaptic Vesicles , 1999, Neuron.

[24]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[25]  Daniel Johnston,et al.  Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism , 1999, Nature Neuroscience.

[26]  E. D’Angelo,et al.  Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum , 2001, Nature Neuroscience.

[27]  B. Zimmermann,et al.  Rim1 and Rabphilin-3 Bind Rab3-GTP by Composite Determinants Partially Related through N-terminal α-Helix Motifs* , 2001, The Journal of Biological Chemistry.

[28]  Shuji Kaneko,et al.  Separate mechanisms of long-term potentiation in two input systems to CA3 pyramidal neurons of rat hippocampal slices as revealed by the whole-cell patch-clamp technique , 1991, Neuroscience Research.

[29]  G. Schiavo,et al.  Direct Interaction of the Rab3 Effector RIM with Ca2+Channels, SNAP-25, and Synaptotagmin* , 2001, The Journal of Biological Chemistry.

[30]  R. Nicoll,et al.  Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. , 1994, Science.

[31]  R. Nicoll,et al.  Synaptic plasticity and dynamic modulation of the postsynaptic membrane , 2000, Nature Neuroscience.

[32]  Thomas C. Südhof,et al.  Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion , 1997, Nature.

[33]  Javier F. Medina,et al.  Timing Mechanisms in the Cerebellum: Testing Predictions of a Large-Scale Computer Simulation , 2000, The Journal of Neuroscience.

[34]  E. Kandel,et al.  cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase , 1994, Cell.

[35]  D. Linden,et al.  Synaptically evoked glutamate transport currents may be used to detect the expression of long-term potentiation in cerebellar culture. , 1998, Journal of neurophysiology.

[36]  D. Linden,et al.  Impaired Cerebellar Long-Term Potentiation in Type I Adenylyl Cyclase Mutant Mice , 1998, Neuron.

[37]  E R Kandel,et al.  A presynaptic locus for long-term potentiation of elementary synaptic transmission at mossy fiber synapses in culture. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Nicoll,et al.  Hippocampal mossy fiber LTP is independent of postsynaptic calcium , 2001, Nature Neuroscience.

[39]  Gang Tong,et al.  Long-Term Potentiation in Cultures of Single Hippocampal Granule Cells: A Presynaptic Form of Plasticity , 1996, Neuron.

[40]  F Benfenati,et al.  Synaptic vesicle phosphoproteins and regulation of synaptic function. , 1993, Science.

[41]  D. Linden,et al.  Activation of Presynaptic cAMP-Dependent Protein Kinase Is Required for Induction of Cerebellar Long-Term Potentiation , 1999, The Journal of Neuroscience.

[42]  T. Südhof,et al.  Genomic definition of RIM proteins: evolutionary amplification of a family of synaptic regulatory proteins. , 2003, Genomics.

[43]  R. Nicoll,et al.  Rabphilin Knock-Out Mice Reveal That Rabphilin Is Not Required for Rab3 Function in Regulating Neurotransmitter Release , 1999, The Journal of Neuroscience.

[44]  Thomas C. Südhof,et al.  RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone , 2002, Nature.

[45]  D. Linden The expression of cerebellar LTD in culture is not associated with changes in AMPA-receptor kinetics, agonist affinity, or unitary conductance , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Lisberger,et al.  The Cerebellum: A Neuronal Learning Machine? , 1996, Science.

[47]  R. Nicoll,et al.  Comparison of two forms of long-term potentiation in single hippocampal neurons. , 1990, Science.

[48]  T. Südhof,et al.  Synaptic targeting of rabphilin-3A, a synaptic vesicle Ca2+/phospholipid-binding protein, depends on rab3A/3C , 1994, Neuron.

[49]  Scott T. Wong,et al.  Type I Adenylyl Cyclase Mutant Mice Have Impaired Mossy Fiber Long-Term Potentiation , 1998, The Journal of Neuroscience.

[50]  T. Südhof,et al.  Region-Specific Phosphorylation of Rabphilin in Mossy Fiber Nerve Terminals of the Hippocampus , 1998, The Journal of Neuroscience.

[51]  A. Hudspeth,et al.  RIM Binding Proteins (RBPs) Couple Rab3-Interacting Molecules (RIMs) to Voltage-Gated Ca2+ Channels , 2002, Neuron.

[52]  M. Calcagnotto,et al.  Presynaptic Long-Term Potentiation in Corticothalamic Synapses , 1999, The Journal of Neuroscience.

[53]  Roger Y Tsien,et al.  A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Nicoll,et al.  Contrasting properties of two forms of long-term potentiation in the hippocampus , 1995, Nature.

[55]  Javier F. Medina,et al.  Computer simulation of cerebellar information processing , 2000, Nature Neuroscience.

[56]  Paul Antoine Salin,et al.  Cyclic AMP Mediates a Presynaptic Form of LTP at Cerebellar Parallel Fiber Synapses , 1996, Neuron.

[57]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[58]  Nils Brose,et al.  Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming , 2001, Neuron.

[59]  Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. , 2002, The Journal of cell biology.

[60]  David W. Tank,et al.  The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium , 1991, Neuron.

[61]  T. Südhof,et al.  A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Thomas C. Südhof,et al.  RIM1α is required for presynaptic long-term potentiation , 2002, Nature.

[63]  J. Spencer,et al.  Activation of cyclic AMP-dependent protein kinase is required for long-term enhancement at corticostriatal synapses in rats , 2002, Neuroscience Letters.

[64]  Kenneth M. Johnson,et al.  Mechanism of Action of rab3A in Mossy Fiber LTP , 1998, Neuron.

[65]  Robert C. Malenka,et al.  Rab3A is essential for mossy fibre long-term potentiation in the hippocampus , 1997, Nature.