Shuffled frog-leaping algorithm for parameter estimation of a double-cage asynchronous machine

This study introduces a shuffled frog-leaping algorithm based method for the estimation of induction motor double-cage model parameters from standard manufacturer data: full load torque, full load power factor, full load current, maximum torque, starting torque and starting current. The steady-state equivalent circuit is applied for the simulations. The circuit parameters are found as the result of the error minimisation function between the estimated and maker data. The suggested algorithm solves the parameter estimation problem and surpasses the solutions reached by particle swarm optimisation, genetic algorithms and classical parameter estimation method (a modified Newton method). The algorithm has been tested on three motors.

[1]  Yassine Koubaa Recursive identification of induction motor parameters , 2004, Simul. Model. Pract. Theory.

[2]  Srikrishna Subramanian,et al.  Bacterial Foraging Technique Based Parameter Estimation of Induction Motor from Manufacturer Data , 2010 .

[3]  P. Kundur,et al.  An induction motor parameter estimation method , 2001 .

[4]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[5]  F. Pilo,et al.  A multiobjective evolutionary algorithm for the sizing and siting of distributed generation , 2005, IEEE Transactions on Power Systems.

[6]  Francisco Jurado,et al.  Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization , 2008 .

[7]  G. J. Rogers,et al.  Induction Machine Modelling for Electromagnetic Transient Program , 1987, IEEE Power Engineering Review.

[8]  Hyun-Kyo Jung,et al.  Determination of induction motor parameters by using neural network based on FEM results , 1997 .

[9]  Vahid Rashtchi,et al.  Parameter identification of deep-bar induction motors using genetic algorithm , 2007 .

[10]  J. Pedra,et al.  Estimation of induction motor double-cage model parameters from manufacturer data , 2004, IEEE Transactions on Energy Conversion.

[11]  V. Giliberti,et al.  Real-time estimation of induction motor parameters by LSE , 1994, Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics.

[12]  R. Bhuvaneswari,et al.  Multi-objective parameter estimation of induction motor using particle swarm optimization , 2010, Eng. Appl. Artif. Intell..

[13]  R. R. Bishop,et al.  Identifying induction machine parameters using a genetic optimization algorithm , 1990, IEEE Proceedings on Southeastcon.

[14]  Leon M. Tolbert,et al.  A nonlinear least-squares approach for identification of the induction motor parameters , 2005, IEEE Transactions on Automatic Control.

[15]  M. Zerikat,et al.  A practical approach to modelling induction machine saturation , 2004 .

[16]  Muzaffar Eusuff,et al.  Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization , 2006 .

[17]  F. Shokooh,et al.  Parameter estimation for induction machines based on sensitivity analysis , 1988, Record of Conference Papers., Industrial Applications Society 35th Annual Petroleum and Chemical Industry Conference,.

[18]  Francesco Alonge,et al.  Parameter identification of induction motor model using genetic algorithms , 1998 .

[19]  A. F. Puchstein,et al.  Alternating-current machines , 1942 .

[20]  Nicolás Ruiz-Reyes,et al.  Evaluation of a Particle Swarm Optimization Based Method for Optimal Location of Photovoltaic Grid-connected Systems , 2010 .