Is absolute separability determined by the partial transpose?
暂无分享,去创建一个
Srinivasan Arunachalam | Vincent Russo | Nathaniel Johnston | Srinivasan Arunachalam | N. Johnston | Vincent Russo
[1] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[2] C. H. Bennett,et al. Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.
[3] Felix Schlenk,et al. Proof of Theorem 3 , 2005 .
[4] Lin Chen,et al. Boundary of the set of separable states , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] Notes on extremality of the Choi map , 2013, 1306.0945.
[6] V. Roychowdhury,et al. Non-full rank bound entangled states satisfying the range criterion , 2004, quant-ph/0406023.
[7] Leonid Gurvits. Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.
[8] Dariusz Chruściński,et al. Geometry of Entanglement Witnesses for Two Qutrits , 2011, Open Syst. Inf. Dyn..
[9] N. Johnston. Norms and Cones in the Theory of Quantum Entanglement , 2012, 1207.1479.
[10] N. Johnston. Separability from spectrum for qubit-qudit states , 2013, 1309.2006.
[11] P. Horodecki. Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.
[12] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[13] B. Moor,et al. Maximally entangled mixed states of two qubits , 2000, quant-ph/0011110.
[14] R. Bhatia. Matrix Analysis , 1996 .
[15] Gniewomir Sarbicki,et al. Optimal Entanglement Witnesses for Two Qutrits , 2013, Open Syst. Inf. Dyn..
[16] F. Nori,et al. Determining eigenvalues of a density matrix with minimal information in a single experimental setting , 2013, 1308.5413.
[17] J. Eisert,et al. Unifying several separability conditions using the covariance matrix criterion , 2008, 0803.0757.
[18] Sevag Gharibian,et al. Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..
[19] L. Gurvits,et al. Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.
[20] John Watrous,et al. Notes on super-operator norms induced by schatten norms , 2004, Quantum Inf. Comput..
[21] M. Horodecki,et al. Quantum entanglement , 2007, quant-ph/0702225.
[22] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[23] M. Horodecki,et al. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.
[24] Oliver Rudolph. Some properties of the computable cross-norm criterion for separability , 2002, quant-ph/0212047.
[25] Man-Duen Choi. Positive semidefinite biquadratic forms , 1975 .
[26] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[27] M. Owari,et al. Power of symmetric extensions for entanglement detection , 2009, 0906.2731.
[28] Ling-An Wu,et al. A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..
[29] G. Tóth,et al. Entanglement detection , 2008, 0811.2803.
[30] P. Shor,et al. Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.
[31] Volker Mehrmann,et al. Singular-value-like decomposition for complex matrix triples , 2010, J. Comput. Appl. Math..
[32] E. Størmer. Positive linear maps of operator algebras , 2012 .
[33] S. Woronowicz. Positive maps of low dimensional matrix algebras , 1976 .
[34] P. Parrilo,et al. Complete family of separability criteria , 2003, quant-ph/0308032.
[35] Seung-Hyeok Kye,et al. Generalized Choi maps in three-dimensional matrix algebra , 1992 .
[36] Paweł Horodecki,et al. Direct estimations of linear and nonlinear functionals of a quantum state. , 2002, Physical review letters.
[37] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[38] William Hall,et al. A new criterion for indecomposability of positive maps , 2006 .
[39] D. Bruß,et al. Construction of quantum states with bound entanglement , 1999, quant-ph/9911056.
[40] J. Chatterjee,et al. Witness of mixed separable states useful for entanglement creation , 2014, 1401.5324.
[41] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[42] David W. Kribs,et al. A family of norms with applications in quantum information theory II , 2009, Quantum Inf. Comput..
[43] John Watrous,et al. Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..
[44] Ion Nechita,et al. Positive reduction from spectra , 2014, 1406.1277.
[45] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[46] R. Hildebrand. Positive partial transpose from spectra , 2007 .
[47] John Watrous,et al. Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..
[48] M. Horodecki,et al. Reduction criterion of separability and limits for a class of distillation protocols , 1999 .
[49] Seung-Hyeok Kye,et al. Entanglement Witnesses Arising from Exposed Positive Linear Maps , 2011, Open Syst. Inf. Dyn..
[50] А Е Китаев,et al. Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .
[51] K. Życzkowski,et al. Geometry of entangled states , 2000, quant-ph/0006068.
[52] H. Breuer. Optimal entanglement criterion for mixed quantum states. , 2006, Physical review letters.
[53] G. Vidal,et al. Robustness of entanglement , 1998, quant-ph/9806094.
[54] Gniewomir Sarbicki,et al. Entanglement witnesses: construction, analysis and classification , 2014, 1402.2413.