Is absolute separability determined by the partial transpose?

The absolute separability problem asks for a characterization of the quantum states ρ ∈ Mm⊗ Mn with the property that UρU+ is separable for all unitary matrices U. We investigate whether or not it is the case that ρ is absolutely separable if and only if UρU+ has positive partial transpose for all unitary matrices U. In particular, we develop an easy-to-use method for showing that an entanglement witness or positive map is unable to detect entanglement in any such state, and we apply our method to many well-known separability criteria, including the range criterion, the realignment criterion, the Choi map and its generalizations, and the Breuer-Hall map. We also show that these two properties coincide for the family of isotropic states, and several eigenvalue results for entanglement witnesses are proved along the way that are of independent interest.

[1]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[2]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[3]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[4]  Lin Chen,et al.  Boundary of the set of separable states , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Notes on extremality of the Choi map , 2013, 1306.0945.

[6]  V. Roychowdhury,et al.  Non-full rank bound entangled states satisfying the range criterion , 2004, quant-ph/0406023.

[7]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[8]  Dariusz Chruściński,et al.  Geometry of Entanglement Witnesses for Two Qutrits , 2011, Open Syst. Inf. Dyn..

[9]  N. Johnston Norms and Cones in the Theory of Quantum Entanglement , 2012, 1207.1479.

[10]  N. Johnston Separability from spectrum for qubit-qudit states , 2013, 1309.2006.

[11]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[12]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[13]  B. Moor,et al.  Maximally entangled mixed states of two qubits , 2000, quant-ph/0011110.

[14]  R. Bhatia Matrix Analysis , 1996 .

[15]  Gniewomir Sarbicki,et al.  Optimal Entanglement Witnesses for Two Qutrits , 2013, Open Syst. Inf. Dyn..

[16]  F. Nori,et al.  Determining eigenvalues of a density matrix with minimal information in a single experimental setting , 2013, 1308.5413.

[17]  J. Eisert,et al.  Unifying several separability conditions using the covariance matrix criterion , 2008, 0803.0757.

[18]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[19]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[20]  John Watrous,et al.  Notes on super-operator norms induced by schatten norms , 2004, Quantum Inf. Comput..

[21]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[22]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[23]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[24]  Oliver Rudolph Some properties of the computable cross-norm criterion for separability , 2002, quant-ph/0212047.

[25]  Man-Duen Choi Positive semidefinite biquadratic forms , 1975 .

[26]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[27]  M. Owari,et al.  Power of symmetric extensions for entanglement detection , 2009, 0906.2731.

[28]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[29]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[30]  P. Shor,et al.  Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.

[31]  Volker Mehrmann,et al.  Singular-value-like decomposition for complex matrix triples , 2010, J. Comput. Appl. Math..

[32]  E. Størmer Positive linear maps of operator algebras , 2012 .

[33]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[34]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[35]  Seung-Hyeok Kye,et al.  Generalized Choi maps in three-dimensional matrix algebra , 1992 .

[36]  Paweł Horodecki,et al.  Direct estimations of linear and nonlinear functionals of a quantum state. , 2002, Physical review letters.

[37]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[38]  William Hall,et al.  A new criterion for indecomposability of positive maps , 2006 .

[39]  D. Bruß,et al.  Construction of quantum states with bound entanglement , 1999, quant-ph/9911056.

[40]  J. Chatterjee,et al.  Witness of mixed separable states useful for entanglement creation , 2014, 1401.5324.

[41]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[42]  David W. Kribs,et al.  A family of norms with applications in quantum information theory II , 2009, Quantum Inf. Comput..

[43]  John Watrous,et al.  Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..

[44]  Ion Nechita,et al.  Positive reduction from spectra , 2014, 1406.1277.

[45]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[46]  R. Hildebrand Positive partial transpose from spectra , 2007 .

[47]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[48]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[49]  Seung-Hyeok Kye,et al.  Entanglement Witnesses Arising from Exposed Positive Linear Maps , 2011, Open Syst. Inf. Dyn..

[50]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[51]  K. Życzkowski,et al.  Geometry of entangled states , 2000, quant-ph/0006068.

[52]  H. Breuer Optimal entanglement criterion for mixed quantum states. , 2006, Physical review letters.

[53]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[54]  Gniewomir Sarbicki,et al.  Entanglement witnesses: construction, analysis and classification , 2014, 1402.2413.