Optimal flushing flow rates in para-xylene simulated moving-bed considering geometric factor of dead volume

The complex geometry of dead volume is often modeled into a simplified geometry, but little attention has been paid to how the simplified geometry of dead volume influences one-dimensional (1D) SMB modeling. This study investigated effects of the geometric factor of dead volume on 7-zone para-xylene (PX) simulated moving-bed (SMB). This work demonstrated that a complex geometry of dead volume can be modeled into a simple geometry by using a geometric factor in the 1D SMB simulations. Optimal flushing flow rates of the PX SMB were found by the parametric study on recovery and purity, employing the geometric factor to a simplified geometry.

[1]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[2]  M. Kinnaert,et al.  Modelling and parametric estimation of simulated moving bed chromatographic processes (SMB) , 2009 .

[3]  Christian Langel,et al.  Extra-column dead volume in simulated moving bed separations: theory and experiments. , 2009, Journal of chromatography. A.

[4]  H. S. Fogler,et al.  Elements of Chemical Reaction Engineering (4th Edition) (Prentice Hall International Series in the Physical and Chemical Engineering Sciences) (Hardcover) , 2005 .

[5]  A. Rodrigues,et al.  Chiral Separation of R,S‐α‐Tetralol by Simulated Moving Bed , 2008 .

[6]  Alírio E. Rodrigues,et al.  Understanding and revamping of industrial scale SMB units for p-xylene separation , 2007 .

[7]  M. Douglas LeVan,et al.  Fundamentals of Adsorption , 1996 .

[8]  H. S. Fogler,et al.  Elements of Chemical Reaction Engineering , 1986 .

[9]  W Arlt,et al.  Optimization of simulated moving bed plants with low efficient stationary phases: separation of fructose and glucose. , 2000, Journal of chromatography. A.

[10]  Robert J. Wooley,et al.  A Nine-Zone Simulating Moving Bed for the Recovery of Glucose and Xylose from Biomass Hydrolyzate , 1998 .

[11]  Sten Bay Jørgensen,et al.  A fast and accurate numerical method for solving simulated moving bed (SMB) chromatographic separation problems , 2004 .

[12]  M. Morbidelli,et al.  Simulated moving-bed chromatography and its application to chirotechnology. , 2000, Trends in biotechnology.

[13]  Kus Hidajat,et al.  Optimal Operation of an Industrial-Scale Parex Process for the Recovery of p-Xylene from a Mixture of C8 Aromatics , 2005 .

[14]  Chonghun Han,et al.  Improvement of para-Xylene SMB Process Performance on an Industrial Scale , 2010 .

[15]  Y. Lim,et al.  Effect of dead volume on performance of simulated moving bed process , 2011 .

[16]  M. Kinnaert,et al.  Parametric uncertainties and influence of the dead volume representation in modelling simulated moving bed separation processes. , 2010, Journal of chromatography. A.

[17]  Andreas Seidel-Morgenstern,et al.  Application of gradients in the simulated moving bed process , 2001 .

[18]  O. Levenspiel Chemical Reaction Engineering , 1972 .

[19]  Malte Kaspereit,et al.  New Developments in Simulated Moving Bed Chromatography , 2008 .

[20]  Luís S. Pais,et al.  Modeling strategies for enantiomers separation by SMB chromatography , 1998 .

[21]  Alírio E. Rodrigues,et al.  Two-level optimization of an existing SMB for p-xylene separation , 2005, Comput. Chem. Eng..

[22]  Alírio E. Rodrigues,et al.  Design of a gas phase simulated moving bed for propane/propylene separation , 2009 .

[23]  Norman N. Li,et al.  Chemical Reactor Design, Optimization, And Scaleup , 1987 .

[24]  Massimo Morbidelli,et al.  Simulated moving‐bed units with extra‐column dead volume , 1999 .

[25]  J. Bosma More efficient process chromatography , 2001 .

[26]  G. Dünnebier,et al.  Modelling and simulation of nonlinear chromatographic separation processes: a comparison of different modelling approaches , 2000 .

[27]  Stephen H. Brown,et al.  Isomerization and Transalkylation of Alkylaromatics , 2008 .

[28]  G. Öhlmann,et al.  Handbook of Heterogeneous Catalysis , 1999 .

[29]  Sungyong Mun,et al.  Robust Pinched-Wave Design of a Size-Exclusion Simulated Moving-Bed Process for Insulin Purification , 2003 .

[30]  A. Rodrigues,et al.  Influence of the Transfer Line Dead Volume on the Performance of an Industrial Scale Simulated Moving Bed for p-Xylene Separation , 2003 .

[31]  D. C. Azevedo Separation/reaction in simulated moving bed : Application to the production of industrial sugars , 2013 .

[32]  Alírio E. Rodrigues,et al.  Modeling and Simulation of a Simulated Moving Bed for the Separation of p-Xylene , 2002 .