Treewidth of Chordal Bipartite Graphs

Chordal bipartite graphs are exactly those bipartite graphs in which every cycle of length at least six has a chord. The treewidth of a graph G is the smallest maximum cliquesize among all chordal supergraphs of G decreased by one. We present a polynomial time algorithm for the exact computation of the treewidth of all chordal bipartite graphs.

[1]  Doron Rotem,et al.  Recognition of Perfect Elimination Bipartite Graphs , 1982, Inf. Process. Lett..

[2]  Martin Farber,et al.  Characterizations of strongly chordal graphs , 1983, Discret. Math..

[3]  Anna Lubiw,et al.  Doubly lexical orderings of matrices , 1985, STOC '85.

[4]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[5]  Andreas Brandstädt,et al.  The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs , 1987, Theor. Comput. Sci..

[6]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[7]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..

[8]  Robin Thomas,et al.  Algorithms Finding Tree-Decompositions of Graphs , 1991, J. Algorithms.

[9]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[10]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.

[11]  Bruce A. Reed,et al.  Finding approximate separators and computing tree width quickly , 1992, STOC '92.

[12]  Ton Kloks,et al.  Approximating Treewidth and Pathwidth of some Classes of Perfect Graphs , 1992, ISAAC.

[13]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1993, SIAM J. Discret. Math..

[14]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.

[15]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[16]  C. Pandu Rangan,et al.  Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..