Exploiting orbits in symmetric ILP

Abstract.This paper describes components of a branch-and-cut algorithm for solving integer linear programs having a large symmetry group. It describes an isomorphism pruning algorithm and variable setting procedures using orbits of the symmetry group. Pruning and orbit computations are performed by backtracking procedures using a Schreier-Sims table for representing the symmetry group. Applications to hard set covering problems, generation of covering designs and error correcting codes are given.

[1]  Michael Jünger,et al.  Branch-and-Cut Algorithms for Combinatorial Optimization and Their Implementation in ABACUS , 2000, Computational Combinatorial Optimization.

[2]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[3]  Martin Grötschel,et al.  Solution of large-scale symmetric travelling salesman problems , 1991, Math. Program..

[4]  Hans van Maaren,et al.  Improved Solutions to the Steiner Triple Covering Problem , 1998, Inf. Process. Lett..

[5]  Michael Jünger,et al.  Computational Combinatorial Optimization , 2001, Lecture Notes in Computer Science.

[6]  Stefan Thienel,et al.  ABACUS - a branch-and-CUt system , 1995 .

[7]  Giovanni Rinaldi,et al.  A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..

[8]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[9]  D. R. Fulkerson,et al.  Two computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triple systems , 1974 .

[10]  G. Nemhauser,et al.  Integer Programming , 2020 .

[11]  Eugene M. Luks,et al.  Permutation Groups and Polynomial-Time Computation , 1996, Groups And Computation.

[12]  Davis Avis A note on some computationally difficult set covering problems , 1980, Math. Program..

[13]  Douglas R Stinson,et al.  Contemporary design theory : a collection of surveys , 1992 .

[14]  François Margot,et al.  Small covering designs by branch-and-cut , 2003, Math. Program..

[15]  J. Leon On an algorithm for finding a base and a strong generating set for a group given by generating permutations , 1980 .

[16]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[17]  Carlo Mannino,et al.  Solving hard set covering problems , 1995, Oper. Res. Lett..

[18]  Christoph M. Hoffmann,et al.  Group-Theoretic Algorithms and Graph Isomorphism , 1982, Lecture Notes in Computer Science.

[19]  Zhen Zhang,et al.  Bounds on the sizes of constant weight covering codes , 1995, Des. Codes Cryptogr..

[20]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[21]  François Margot,et al.  Pruning by isomorphism in branch-and-cut , 2001, Math. Program..

[22]  Gregory Butler,et al.  Fundamental Algorithms for Permutation Groups , 1991, Lecture Notes in Computer Science.

[23]  G. Butler Computing in Permutation and Ma-trix Groups II: Backtrack Algorithm , 1982 .

[24]  Michael Jünger,et al.  Introduction to ABACUS - a branch-and-cut system , 1998, Oper. Res. Lett..

[25]  Alexander Martin,et al.  General Mixed Integer Programming: Computational Issues for Branch-and-Cut Algorithms , 2000, Computational Combinatorial Optimization.

[26]  Gregory Butler,et al.  A General Backtrack Algorithm for the Isomorphism Problem of Combinatorial Objects , 1985, J. Symb. Comput..

[27]  Donald L. Kreher,et al.  Combinatorial algorithms: generation, enumeration, and search , 1998, SIGA.

[28]  John J. Cannon,et al.  Computing in permutation and matrix groups. I. Normal closure, commutator subgroups, series , 1982 .

[29]  A. Nijenhuis Combinatorial algorithms , 1975 .

[30]  Hanif D. Sherali,et al.  Improving Discrete Model Representations via Symmetry Considerations , 2001, Manag. Sci..