A survey on mean convergence of interpolatory processes
暂无分享,去创建一个
[1] P. Erdös,et al. Interpolation , 1953, An Introduction to Scientific, Symbolic, and Graphical Computation.
[2] E. H. Zarantonello. On trigonometric interpolation , 1952 .
[3] Least squares and interpolation in roots of unity , 1964 .
[4] J. H. Curtiss. Convergence of complex Lagrange interpolation polynomials on the locus of the interpolation points , 1965 .
[5] Über Approximationseigenschaften differenzierter Lagrangescher Interpolationspolynome mit Jacobischen Abszissen , 1968 .
[6] Richard Askey,et al. Mean convergence of orthogonal series and Lagrange interpolation , 1972 .
[7] Summability of Jacobi series , 1973 .
[8] On the convergence of rational functions which interpolate in the roots of unity. , 1973 .
[9] V M Badkov,et al. CONVERGENCE IN THE MEAN AND ALMOST EVERYWHERE OF FOURIER SERIES IN POLYNOMIALS ORTHOGONAL ON AN INTERVAL , 1974 .
[10] Péter Vértesi,et al. On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes , 1980 .
[11] P. Turán,et al. On some open problems of approximation theory , 1980 .
[12] Péter Vértesi,et al. On the Lebesgue Function of Interpolation , 1981 .
[13] On sums of Lebesgue function type , 1982 .
[14] Mean Convergence and Interpolation in Roots of Unity , 1983 .
[15] Paul Nevai,et al. Mean convergence of Lagrange interpolation. III , 1984 .
[16] Péter Vértesi,et al. Mean convergence of Hermite-Fejér interpolation , 1985 .
[17] Divergence of trigonometric lacunary interpolation , 1985 .
[18] Solution of Turán's problem on divergence of Lagrange interpolation in Lp with p > 2☆ , 1985 .
[19] Paul Neval,et al. Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .
[20] On an open problem of P. Tura´n concerning Birkhoff interpolation based on th , 1986 .
[21] V. Totik,et al. Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials , 1986 .
[22] ON THE CONVERGENCE OF THE DERIVATIVES OF PROJECTION OPERATORS , 1987 .
[23] V. Totik,et al. Moduli of smoothness , 1987 .
[24] Complex interpolating polynomials , 1988 .
[25] DERIVATIVES OF PROJECTION OPERATORS , 1989 .
[26] APPROXIMATION IN THE MEAN BY LAGRANGE INTERPOLATION POLYNOMIALS IN THE COMPLEX PLANE , 1989 .
[27] Péter Vértesi. Hermite-Fejér interpolations of higher order. I , 1989 .
[28] A. Varma,et al. An analogue of a problem of P. Erdös and E. Feldheim on L p convergence of interpolatory processes , 1989 .
[29] J. Szabados,et al. Interpolation of Functions , 1990 .
[30] Attila Máté,et al. A Tribute to Paul Erdős: Necessary conditions for mean convergence of Hermite–Fejér interpolation , 1990 .
[31] Mean convergence of Birkhoff interpolation based on the roots of unity: a problem of P. Tura´n , 1990 .
[32] Some good point systems for derivatives of lagrange interpolatory operators , 1990 .
[33] Hermite and Hermite-Fejér interpolations of higher order. II (mean convergence) , 1990 .
[34] József Szabados,et al. On higher order Hermite-Fejér interpolation in weightedLp-metric , 1991 .
[35] The Marcinkiewicz-Zygmund inequality with derivatives , 1991 .
[36] P. Nevai,et al. Mean convergence of derivatives of Lagrange interpolation , 1991 .
[37] G. Mastroianni. Uniform convergence of derivatives of Lagrange interpolation , 1992 .
[38] Yuan Xu,et al. Weighted Lp convergence of hermite interpolation of higher order , 1992 .
[39] Péter Vértesi,et al. On the L p convergence of Lagrange interpolating entire functions of exponential type , 1992 .
[40] J. Szabados. On the order of magnitude of fundamental polynomials of hermite interpolation , 1993 .
[41] Yuan Xu. Mean convergence of generalized Jacobi series and interpolating polynomials, I , 1993 .
[42] INTERPOLATORY PROPERTIES OF CHEBYSHEV POLYNOMIALS , 1993 .
[43] C. Chui,et al. On Lagrange interpolation at disturbed roots of unity , 1993 .
[44] Interpolation and simultaneous mean convergence of derivatives , 1993 .
[45] P. Nevai,et al. Mean Convergence of Derivatives of Extended Lagrange Interpolation with Additional Nodes , 1993 .
[46] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.