A survey on mean convergence of interpolatory processes

[1]  P. Erdös,et al.  Interpolation , 1953, An Introduction to Scientific, Symbolic, and Graphical Computation.

[2]  E. H. Zarantonello On trigonometric interpolation , 1952 .

[3]  Least squares and interpolation in roots of unity , 1964 .

[4]  J. H. Curtiss Convergence of complex Lagrange interpolation polynomials on the locus of the interpolation points , 1965 .

[5]  Über Approximationseigenschaften differenzierter Lagrangescher Interpolationspolynome mit Jacobischen Abszissen , 1968 .

[6]  Richard Askey,et al.  Mean convergence of orthogonal series and Lagrange interpolation , 1972 .

[7]  Summability of Jacobi series , 1973 .

[8]  On the convergence of rational functions which interpolate in the roots of unity. , 1973 .

[9]  V M Badkov,et al.  CONVERGENCE IN THE MEAN AND ALMOST EVERYWHERE OF FOURIER SERIES IN POLYNOMIALS ORTHOGONAL ON AN INTERVAL , 1974 .

[10]  Péter Vértesi,et al.  On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes , 1980 .

[11]  P. Turán,et al.  On some open problems of approximation theory , 1980 .

[12]  Péter Vértesi,et al.  On the Lebesgue Function of Interpolation , 1981 .

[13]  On sums of Lebesgue function type , 1982 .

[14]  Mean Convergence and Interpolation in Roots of Unity , 1983 .

[15]  Paul Nevai,et al.  Mean convergence of Lagrange interpolation. III , 1984 .

[16]  Péter Vértesi,et al.  Mean convergence of Hermite-Fejér interpolation , 1985 .

[17]  Divergence of trigonometric lacunary interpolation , 1985 .

[18]  Solution of Turán's problem on divergence of Lagrange interpolation in Lp with p > 2☆ , 1985 .

[19]  Paul Neval,et al.  Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .

[20]  On an open problem of P. Tura´n concerning Birkhoff interpolation based on th , 1986 .

[21]  V. Totik,et al.  Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials , 1986 .

[22]  ON THE CONVERGENCE OF THE DERIVATIVES OF PROJECTION OPERATORS , 1987 .

[23]  V. Totik,et al.  Moduli of smoothness , 1987 .

[24]  Complex interpolating polynomials , 1988 .

[25]  DERIVATIVES OF PROJECTION OPERATORS , 1989 .

[26]  APPROXIMATION IN THE MEAN BY LAGRANGE INTERPOLATION POLYNOMIALS IN THE COMPLEX PLANE , 1989 .

[27]  Péter Vértesi Hermite-Fejér interpolations of higher order. I , 1989 .

[28]  A. Varma,et al.  An analogue of a problem of P. Erdös and E. Feldheim on L p convergence of interpolatory processes , 1989 .

[29]  J. Szabados,et al.  Interpolation of Functions , 1990 .

[30]  Attila Máté,et al.  A Tribute to Paul Erdős: Necessary conditions for mean convergence of Hermite–Fejér interpolation , 1990 .

[31]  Mean convergence of Birkhoff interpolation based on the roots of unity: a problem of P. Tura´n , 1990 .

[32]  Some good point systems for derivatives of lagrange interpolatory operators , 1990 .

[33]  Hermite and Hermite-Fejér interpolations of higher order. II (mean convergence) , 1990 .

[34]  József Szabados,et al.  On higher order Hermite-Fejér interpolation in weightedLp-metric , 1991 .

[35]  The Marcinkiewicz-Zygmund inequality with derivatives , 1991 .

[36]  P. Nevai,et al.  Mean convergence of derivatives of Lagrange interpolation , 1991 .

[37]  G. Mastroianni Uniform convergence of derivatives of Lagrange interpolation , 1992 .

[38]  Yuan Xu,et al.  Weighted Lp convergence of hermite interpolation of higher order , 1992 .

[39]  Péter Vértesi,et al.  On the L p convergence of Lagrange interpolating entire functions of exponential type , 1992 .

[40]  J. Szabados On the order of magnitude of fundamental polynomials of hermite interpolation , 1993 .

[41]  Yuan Xu Mean convergence of generalized Jacobi series and interpolating polynomials, I , 1993 .

[42]  INTERPOLATORY PROPERTIES OF CHEBYSHEV POLYNOMIALS , 1993 .

[43]  C. Chui,et al.  On Lagrange interpolation at disturbed roots of unity , 1993 .

[44]  Interpolation and simultaneous mean convergence of derivatives , 1993 .

[45]  P. Nevai,et al.  Mean Convergence of Derivatives of Extended Lagrange Interpolation with Additional Nodes , 1993 .

[46]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.